module.py 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
sys.path.insert(0, ".")

import time

from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, serving
import cv2
import numpy as np
import paddlehub as hub

import tools.infer.predict as paddle_predict
28
from tools.infer.utils import Base64ToCV2, create_paddle_predictor
29 30 31 32 33 34 35 36 37 38 39
from deploy.hubserving.clas.params import read_params


@moduleinfo(
    name="clas_system",
    version="1.0.0",
    summary="class system service",
    author="paddle-dev",
    author_email="paddle-dev@baidu.com",
    type="cv/class")
class ClasSystem(hub.Module):
T
Tingquan Gao 已提交
40
    def _initialize(self, use_gpu=None, enable_mkldnn=None):
41 42 43 44 45 46
        """
        initialize with the necessary elements
        """
        cfg = read_params()
        if use_gpu is not None:
            cfg.use_gpu = use_gpu
T
Tingquan Gao 已提交
47 48
        if enable_mkldnn is not None:
            cfg.enable_mkldnn = enable_mkldnn
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        cfg.hubserving = True
        cfg.enable_benchmark = False
        self.args = cfg
        if cfg.use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
                print("Use GPU, GPU Memery:{}".format(cfg.gpu_mem))
                print("CUDA_VISIBLE_DEVICES: ", _places)
            except:
                raise RuntimeError(
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
                )
        else:
            print("Use CPU")
T
Tingquan Gao 已提交
64
            print("Enable MKL-DNN") if enable_mkldnn else None
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

    def read_images(self, paths=[]):
        images = []
        for img_path in paths:
            assert os.path.isfile(
                img_path), "The {} isn't a valid file.".format(img_path)
            img = cv2.imread(img_path)
            if img is None:
                logger.info("error in loading image:{}".format(img_path))
                continue
            img = img[:, :, ::-1]
            images.append(img)
        return images

    def predict(self, images=[], paths=[], top_k=1):
        """
        
        Args:
            images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
            paths (list[str]): The paths of images. If paths not images
        Returns:
            res (list): The result of chinese texts and save path of images.
        """

        if images != [] and isinstance(images, list) and paths == []:
            predicted_data = images
        elif images == [] and isinstance(paths, list) and paths != []:
            predicted_data = self.read_images(paths)
        else:
            raise TypeError(
                "The input data is inconsistent with expectations.")

        assert predicted_data != [], "There is not any image to be predicted. Please check the input data."

99
        predictor = create_paddle_predictor(self.args)
100 101 102 103 104 105 106 107 108 109
        all_results = []
        for img in predicted_data:
            if img is None:
                logger.info("error in loading image")
                all_results.append([])
                continue
            starttime = time.time()

            self.args.image_file = img
            self.args.top_k = top_k
110
            classes, scores = paddle_predict.predict(self.args, predictor)
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

            elapse = time.time() - starttime
            logger.info("Predict time: {}".format(elapse))
            all_results.append([classes.tolist(), scores.tolist()])

        return all_results

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        to_cv2 = Base64ToCV2()
        images_decode = [to_cv2(image) for image in images]
        results = self.predict(images_decode, **kwargs)
        return results


if __name__ == '__main__':
    clas = ClasSystem()
    image_path = ['./deploy/hubserving/ILSVRC2012_val_00006666.JPEG', ]
    res = clas.predict(paths=image_path, top_k=5)
    print(res)