README.md 39.1 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1
[简体中文](README_cn.md) | English
D
dyning 已提交
2

D
dyning 已提交
3
# PaddleClas
D
dyning 已提交
4

littletomatodonkey's avatar
littletomatodonkey 已提交
5
## Introduction
D
dyning 已提交
6

littletomatodonkey's avatar
littletomatodonkey 已提交
7
PaddleClas is a toolset for image classification tasks prepared for the industry and academia. It helps users train better computer vision models and apply them in real scenarios.
D
dyning 已提交
8

littletomatodonkey's avatar
littletomatodonkey 已提交
9
**Note**: Baidu proposed a new image classification network structure **`HS-ResNet`**, which reaches 81.3% on ImageNet-1k dataset, while its `params` is almost same as `ResNet50`.The arxiv link is here: [HS-ResNet: Hierarchical-Split Block on Convolutional Neural Network](https://arxiv.org/pdf/2010.07621.pdf). The model structure and the pretrained weights are coming soon!
littletomatodonkey's avatar
littletomatodonkey 已提交
10

littletomatodonkey's avatar
littletomatodonkey 已提交
11 12

**Recent update**
13
- 2020.10.12 Add Paddle-Lite demo。
littletomatodonkey's avatar
littletomatodonkey 已提交
14
- 2020.10.10 Add cpp inference demo and improve FAQ tutorial.
C
cuicheng01 已提交
15 16 17
- 2020.09.17 Add `HRNet_W48_C_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.62%. Add `ResNet34_vd_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 79.72%.
- 2020.09.07 Add `HRNet_W18_C_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 81.16%.
- 2020.07.14 Add `Res2Net200_vd_26w_4s_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 85.13%. Add `Fix_ResNet50_vd_ssld_v2` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 84.00%.
littletomatodonkey's avatar
littletomatodonkey 已提交
18 19
- 2020.06.17 Add English documents.
- 2020.06.12 Add support for training and evaluation on Windows or CPU.
littletomatodonkey's avatar
littletomatodonkey 已提交
20
- [more](./docs/en/update_history_en.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22


littletomatodonkey's avatar
littletomatodonkey 已提交
23
## Features
littletomatodonkey's avatar
littletomatodonkey 已提交
24

C
cuicheng01 已提交
25
- Rich model zoo. Based on the ImageNet-1k classification dataset, PaddleClas provides 24 series of classification network structures and training configurations, 122 models' pretrained weights and their evaluation metrics.
littletomatodonkey's avatar
littletomatodonkey 已提交
26

C
cuicheng01 已提交
27
- SSLD Knowledge Distillation. Based on this SSLD distillation strategy, the top-1 acc of the distilled model is generally increased by more than 3%.
littletomatodonkey's avatar
littletomatodonkey 已提交
28

littletomatodonkey's avatar
littletomatodonkey 已提交
29
- Data augmentation: PaddleClas provides detailed introduction of 8 data augmentation algorithms such as AutoAugment, Cutout, Cutmix, code reproduction and effect evaluation in a unified experimental environment.
littletomatodonkey's avatar
littletomatodonkey 已提交
30

31
- Pretrained model with 100,000 categories: Based on `ResNet50_vd` model, Baidu open sourced the `ResNet50_vd` pretrained model trained on a 100,000-category dataset. In some practical scenarios, the accuracy based on the pretrained weights can be increased by up to 30%.
littletomatodonkey's avatar
littletomatodonkey 已提交
32

littletomatodonkey's avatar
littletomatodonkey 已提交
33
- A variety of training modes, including multi-machine training, mixed precision training, etc.
littletomatodonkey's avatar
littletomatodonkey 已提交
34

littletomatodonkey's avatar
littletomatodonkey 已提交
35
- A variety of inference and deployment solutions, including TensorRT inference, Paddle-Lite inference, model service deployment, model quantification, Paddle Hub, etc.
littletomatodonkey's avatar
littletomatodonkey 已提交
36

littletomatodonkey's avatar
littletomatodonkey 已提交
37
- Support Linux, Windows, macOS and other systems.
littletomatodonkey's avatar
littletomatodonkey 已提交
38 39


littletomatodonkey's avatar
littletomatodonkey 已提交
40
## Tutorials
littletomatodonkey's avatar
littletomatodonkey 已提交
41

littletomatodonkey's avatar
littletomatodonkey 已提交
42 43 44
- [Installation](./docs/en/tutorials/install_en.md)
- [Quick start PaddleClas in 30 minutes](./docs/en/tutorials/quick_start_en.md)
- [Model introduction and model zoo](./docs/en/models/models_intro_en.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    - [Model zoo overview](#Model_zoo_overview)
    - [ResNet and Vd series](#ResNet_and_Vd_series)
    - [Mobile series](#Mobile_series)
    - [SEResNeXt and Res2Net series](#SEResNeXt_and_Res2Net_series)
    - [DPN and DenseNet series](#DPN_and_DenseNet_series)
    - [HRNet series](#HRNet_series)
    - [Inception series](#Inception_series)
    - [EfficientNet and ResNeXt101_wsl series](#EfficientNet_and_ResNeXt101_wsl_series)
    - [ResNeSt and RegNet series](#ResNeSt_and_RegNet_series)
- Model training/evaluation
    - [Data preparation](./docs/en/tutorials/data_en.md)
    - [Model training and finetuning](./docs/en/tutorials/getting_started_en.md)
    - [Model evaluation](./docs/en/tutorials/getting_started_en.md)
- Model prediction/inference
    - [Prediction based on training engine](./docs/en/extension/paddle_inference_en.md)
    - [Python inference](./docs/en/extension/paddle_inference_en.md)
61
    - [C++ inference](./deploy/cpp_infer/readme_en.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
62
    - [Serving deployment](./docs/en/extension/paddle_serving_en.md)
63
    - [Mobile](./deploy/lite/readme.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
64 65 66 67 68 69 70 71
    - [Model Quantization and Compression](docs/en/extension/paddle_quantization_en.md)
- Advanced tutorials
    - [Knowledge distillation](./docs/en/advanced_tutorials/distillation/distillation_en.md)
    - [Data augmentation](./docs/en/advanced_tutorials/image_augmentation/ImageAugment_en.md)
- Applications
    - [Transfer learning](./docs/en/application/transfer_learning_en.md)
    - [Pretrained model with 100,000 categories](./docs/en/application/transfer_learning_en.md)
    - [Generic object detection](./docs/en/application/object_detection_en.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
72
- FAQ
littletomatodonkey's avatar
littletomatodonkey 已提交
73
    - [General image classification problems](./docs/en/faq_en.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
74 75 76 77 78
    - [PaddleClas FAQ](./docs/en/faq_en.md)
- [Competition support](./docs/en/competition_support_en.md)
- [License](#License)
- [Contribution](#Contribution)

littletomatodonkey's avatar
littletomatodonkey 已提交
79

littletomatodonkey's avatar
littletomatodonkey 已提交
80 81
<a name="Model_zoo_overview"></a>
### Model zoo overview
littletomatodonkey's avatar
littletomatodonkey 已提交
82

C
cuicheng01 已提交
83
Based on the ImageNet-1k classification dataset, the 24 classification network structures supported by PaddleClas and the corresponding 122 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters. The  evaluation environment is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
84

littletomatodonkey's avatar
littletomatodonkey 已提交
85 86
* CPU evaluation environment is based on Snapdragon 855 (SD855).
* The GPU evaluation speed is measured by running 500 times under the FP32+TensorRT configuration (excluding the warmup time of the first 10 times).
littletomatodonkey's avatar
littletomatodonkey 已提交
87

D
dyning 已提交
88

littletomatodonkey's avatar
littletomatodonkey 已提交
89
Curves of accuracy to the inference time of common server-side models are shown as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
90

littletomatodonkey's avatar
littletomatodonkey 已提交
91
![](./docs/images/models/T4_benchmark/t4.fp32.bs4.main_fps_top1.png)
D
dyning 已提交
92

littletomatodonkey's avatar
littletomatodonkey 已提交
93

littletomatodonkey's avatar
littletomatodonkey 已提交
94
Curves of accuracy to the inference time and storage size of common mobile-side models are shown as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
95

littletomatodonkey's avatar
littletomatodonkey 已提交
96
![](./docs/images/models/mobile_arm_storage.png)
D
dyning 已提交
97

littletomatodonkey's avatar
littletomatodonkey 已提交
98
![](./docs/images/models/mobile_arm_top1.png)
D
dyning 已提交
99 100


D
dyning 已提交
101

littletomatodonkey's avatar
littletomatodonkey 已提交
102 103
<a name="ResNet_and_Vd_series"></a>
### ResNet and Vd series
D
dyning 已提交
104

littletomatodonkey's avatar
littletomatodonkey 已提交
105 106 107
Accuracy and inference time metrics of ResNet and Vd series models are shown as follows. More detailed information can be refered to [ResNet and Vd series tutorial](./docs/en/models/ResNet_and_vd_en.md).

| Model                 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                         |
littletomatodonkey's avatar
littletomatodonkey 已提交
108
|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------|
littletomatodonkey's avatar
littletomatodonkey 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
| ResNet18            | 0.7098    | 0.8992    | 1.45606               | 3.56305              | 3.66     | 11.69     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar)            |
| ResNet18_vd         | 0.7226    | 0.9080    | 1.54557               | 3.85363              | 4.14     | 11.71     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar)         |
| ResNet34            | 0.7457    | 0.9214    | 2.34957               | 5.89821              | 7.36     | 21.8      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar)            |
| ResNet34_vd         | 0.7598    | 0.9298    | 2.43427               | 6.22257              | 7.39     | 21.82     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar)         |
| ResNet34_vd_ssld         | 0.7972    | 0.9490    | 2.43427               | 6.22257              | 7.39     | 21.82     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_ssld_pretrained.tar)         |
| ResNet50            | 0.7650    | 0.9300    | 3.47712               | 7.84421              | 8.19     | 25.56     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar)            |
| ResNet50_vc         | 0.7835    | 0.9403    | 3.52346               | 8.10725              | 8.67     | 25.58     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar)         |
| ResNet50_vd         | 0.7912    | 0.9444    | 3.53131               | 8.09057              | 8.67     | 25.58     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar)         |
| ResNet50_vd_v2      | 0.7984    | 0.9493    | 3.53131               | 8.09057              | 8.67     | 25.58     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar)      |
| ResNet101           | 0.7756    | 0.9364    | 6.07125               | 13.40573             | 15.52    | 44.55     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar)           |
| ResNet101_vd        | 0.8017    | 0.9497    | 6.11704               | 13.76222             | 16.1     | 44.57     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar)        |
| ResNet152           | 0.7826    | 0.9396    | 8.50198               | 19.17073             | 23.05    | 60.19     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar)           |
| ResNet152_vd        | 0.8059    | 0.9530    | 8.54376               | 19.52157             | 23.53    | 60.21     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar)        |
| ResNet200_vd        | 0.8093    | 0.9533    | 10.80619              | 25.01731             | 30.53    | 74.74     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar)        |
| ResNet50_vd_<br>ssld    | 0.8239    | 0.9610    | 3.53131               | 8.09057              | 8.67     | 25.58     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar)    |
| ResNet50_vd_<br>ssld_v2 | 0.8300    | 0.9640    | 3.53131               | 8.09057              | 8.67     | 25.58     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_v2_pretrained.tar) |
| ResNet101_vd_<br>ssld   | 0.8373    | 0.9669    | 6.11704               | 13.76222             | 16.1     | 44.57     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar)   |


<a name="Mobile_series"></a>
### Mobile series

Accuracy and inference time metrics of Mobile series models are shown as follows. More detailed information can be refered to [Mobile series tutorial](./docs/en/models/Mobile_en.md).

C
cuicheng01 已提交
133
| Model                              | Top-1 Acc | Top-5 Acc | SD855 time(ms)<br>bs=1 | Flops(G) | Params(M) | Model storage size(M) | Download Address                                                                                                      |
littletomatodonkey's avatar
littletomatodonkey 已提交
134
|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|
littletomatodonkey's avatar
littletomatodonkey 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
| MobileNetV1_<br>x0_25                | 0.5143    | 0.7546    | 3.21985                | 0.07     | 0.46      | 1.9     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_25_pretrained.tar)                |
| MobileNetV1_<br>x0_5                 | 0.6352    | 0.8473    | 9.579599               | 0.28     | 1.31      | 5.2     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_5_pretrained.tar)                 |
| MobileNetV1_<br>x0_75                | 0.6881    | 0.8823    | 19.436399              | 0.63     | 2.55      | 10      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_75_pretrained.tar)                |
| MobileNetV1                      | 0.7099    | 0.8968    | 32.523048              | 1.11     | 4.19      | 16      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar)                      |
| MobileNetV1_<br>ssld                 | 0.7789    | 0.9394    | 32.523048              | 1.11     | 4.19      | 16      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_ssld_pretrained.tar)                 |
| MobileNetV2_<br>x0_25                | 0.5321    | 0.7652    | 3.79925                | 0.05     | 1.5       | 6.1     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar)                |
| MobileNetV2_<br>x0_5                 | 0.6503    | 0.8572    | 8.7021                 | 0.17     | 1.93      | 7.8     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar)                 |
| MobileNetV2_<br>x0_75                | 0.6983    | 0.8901    | 15.531351              | 0.35     | 2.58      | 10      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_75_pretrained.tar)                |
| MobileNetV2                      | 0.7215    | 0.9065    | 23.317699              | 0.6      | 3.44      | 14      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar)                      |
| MobileNetV2_<br>x1_5                 | 0.7412    | 0.9167    | 45.623848              | 1.32     | 6.76      | 26      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar)                 |
| MobileNetV2_<br>x2_0                 | 0.7523    | 0.9258    | 74.291649              | 2.32     | 11.13     | 43      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar)                 |
| MobileNetV2_<br>ssld                 | 0.7674    | 0.9339    | 23.317699              | 0.6      | 3.44      | 14      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_ssld_pretrained.tar)                 |
| MobileNetV3_<br>large_x1_25          | 0.7641    | 0.9295    | 28.217701              | 0.714    | 7.44      | 29      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_25_pretrained.tar)          |
| MobileNetV3_<br>large_x1_0           | 0.7532    | 0.9231    | 19.30835               | 0.45     | 5.47      | 21      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar)           |
| MobileNetV3_<br>large_x0_75          | 0.7314    | 0.9108    | 13.5646                | 0.296    | 3.91      | 16      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_75_pretrained.tar)          |
| MobileNetV3_<br>large_x0_5           | 0.6924    | 0.8852    | 7.49315                | 0.138    | 2.67      | 11      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_5_pretrained.tar)           |
| MobileNetV3_<br>large_x0_35          | 0.6432    | 0.8546    | 5.13695                | 0.077    | 2.1       | 8.6     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_35_pretrained.tar)          |
| MobileNetV3_<br>small_x1_25          | 0.7067    | 0.8951    | 9.2745                 | 0.195    | 3.62      | 14      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_25_pretrained.tar)          |
| MobileNetV3_<br>small_x1_0           | 0.6824    | 0.8806    | 6.5463                 | 0.123    | 2.94      | 12      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar)           |
| MobileNetV3_<br>small_x0_75          | 0.6602    | 0.8633    | 5.28435                | 0.088    | 2.37      | 9.6     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_75_pretrained.tar)          |
| MobileNetV3_<br>small_x0_5           | 0.5921    | 0.8152    | 3.35165                | 0.043    | 1.9       | 7.8     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_5_pretrained.tar)           |
| MobileNetV3_<br>small_x0_35          | 0.5303    | 0.7637    | 2.6352                 | 0.026    | 1.66      | 6.9     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_35_pretrained.tar)          |
| MobileNetV3_<br>small_x0_35_ssld          | 0.5555    | 0.7771    | 2.6352                 | 0.026    | 1.66      | 6.9     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_35_ssld_pretrained.tar)          |
| MobileNetV3_<br>large_x1_0_ssld      | 0.7896    | 0.9448    | 19.30835               | 0.45     | 5.47      | 21      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar)      |
| MobileNetV3_large_<br>x1_0_ssld_int8 | 0.7605    |     -      | 14.395                 |    -     |      -     | 10      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_int8_pretrained.tar) |
| MobileNetV3_small_<br>x1_0_ssld      | 0.7129    | 0.9010    | 6.5463                 | 0.123    | 2.94      | 12      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar)      |
| ShuffleNetV2                     | 0.6880    | 0.8845    | 10.941                 | 0.28     | 2.26      | 9       | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar)                     |
| ShuffleNetV2_<br>x0_25               | 0.4990    | 0.7379    | 2.329                  | 0.03     | 0.6       | 2.7     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar)               |
| ShuffleNetV2_<br>x0_33               | 0.5373    | 0.7705    | 2.64335                | 0.04     | 0.64      | 2.8     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar)               |
| ShuffleNetV2_<br>x0_5                | 0.6032    | 0.8226    | 4.2613                 | 0.08     | 1.36      | 5.6     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar)                |
| ShuffleNetV2_<br>x1_5                | 0.7163    | 0.9015    | 19.3522                | 0.58     | 3.47      | 14      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar)                |
| ShuffleNetV2_<br>x2_0                | 0.7315    | 0.9120    | 34.770149              | 1.12     | 7.32      | 28      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar)                |
| ShuffleNetV2_<br>swish               | 0.7003    | 0.8917    | 16.023151              | 0.29     | 2.26      | 9.1     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar)               |
| DARTS_GS_4M                      | 0.7523    | 0.9215    | 47.204948              | 1.04     | 4.77      | 21      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DARTS_GS_4M_pretrained.tar)                      |
| DARTS_GS_6M                      | 0.7603    | 0.9279    | 53.720802              | 1.22     | 5.69      | 24      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DARTS_GS_6M_pretrained.tar)                      |
| GhostNet_<br>x0_5                    | 0.6688    | 0.8695    | 5.7143                 | 0.082    | 2.6       | 10      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x0_5_pretrained.pdparams)               |
| GhostNet_<br>x1_0                    | 0.7402    | 0.9165    | 13.5587                | 0.294    | 5.2       | 20      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_0_pretrained.pdparams)               |
| GhostNet_<br>x1_3                    | 0.7579    | 0.9254    | 19.9825                | 0.44     | 7.3       | 29      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_3_pretrained.pdparams)               |


<a name="SEResNeXt_and_Res2Net_series"></a>
### SEResNeXt and Res2Net series

Accuracy and inference time metrics of SEResNeXt and Res2Net series models are shown as follows. More detailed information can be refered to [SEResNext and_Res2Net series tutorial](./docs/en/models/SEResNext_and_Res2Net_en.md).


| Model                 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                         |
littletomatodonkey's avatar
littletomatodonkey 已提交
182
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
littletomatodonkey's avatar
littletomatodonkey 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
| Res2Net50_<br>26w_4s          | 0.7933    | 0.9457    | 4.47188               | 9.65722              | 8.52     | 25.7      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_26w_4s_pretrained.tar)          |
| Res2Net50_vd_<br>26w_4s       | 0.7975    | 0.9491    | 4.52712               | 9.93247              | 8.37     | 25.06     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_vd_26w_4s_pretrained.tar)       |
| Res2Net50_<br>14w_8s          | 0.7946    | 0.9470    | 5.4026                | 10.60273             | 9.01     | 25.72     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar)          |
| Res2Net101_vd_<br>26w_4s      | 0.8064    | 0.9522    | 8.08729               | 17.31208             | 16.67    | 45.22     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar)      |
| Res2Net200_vd_<br>26w_4s      | 0.8121    | 0.9571    | 14.67806              | 32.35032             | 31.49    | 76.21     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar)      |
| Res2Net200_vd_<br>26w_4s_ssld | 0.8513    | 0.9742    | 14.67806              | 32.35032             | 31.49    | 76.21     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_ssld_pretrained.tar) |
| ResNeXt50_<br>32x4d           | 0.7775    | 0.9382    | 7.56327               | 10.6134              | 8.02     | 23.64     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar)           |
| ResNeXt50_vd_<br>32x4d        | 0.7956    | 0.9462    | 7.62044               | 11.03385             | 8.5      | 23.66     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar)        |
| ResNeXt50_<br>64x4d           | 0.7843    | 0.9413    | 13.80962              | 18.4712              | 15.06    | 42.36     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar)           |
| ResNeXt50_vd_<br>64x4d        | 0.8012    | 0.9486    | 13.94449              | 18.88759             | 15.54    | 42.38     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar)        |
| ResNeXt101_<br>32x4d          | 0.7865    | 0.9419    | 16.21503              | 19.96568             | 15.01    | 41.54     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar)          |
| ResNeXt101_vd_<br>32x4d       | 0.8033    | 0.9512    | 16.28103              | 20.25611             | 15.49    | 41.56     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_32x4d_pretrained.tar)       |
| ResNeXt101_<br>64x4d          | 0.7835    | 0.9452    | 30.4788               | 36.29801             | 29.05    | 78.12     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar)          |
| ResNeXt101_vd_<br>64x4d       | 0.8078    | 0.9520    | 30.40456              | 36.77324             | 29.53    | 78.14     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar)       |
| ResNeXt152_<br>32x4d          | 0.7898    | 0.9433    | 24.86299              | 29.36764             | 22.01    | 56.28     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar)          |
| ResNeXt152_vd_<br>32x4d       | 0.8072    | 0.9520    | 25.03258              | 30.08987             | 22.49    | 56.3      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_32x4d_pretrained.tar)       |
| ResNeXt152_<br>64x4d          | 0.7951    | 0.9471    | 46.7564               | 56.34108             | 43.03    | 107.57    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar)          |
| ResNeXt152_vd_<br>64x4d       | 0.8108    | 0.9534    | 47.18638              | 57.16257             | 43.52    | 107.59    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_64x4d_pretrained.tar)       |
| SE_ResNet18_vd            | 0.7333    | 0.9138    | 1.7691                | 4.19877              | 4.14     | 11.8      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet18_vd_pretrained.tar)            |
| SE_ResNet34_vd            | 0.7651    | 0.9320    | 2.88559               | 7.03291              | 7.84     | 21.98     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet34_vd_pretrained.tar)            |
| SE_ResNet50_vd            | 0.7952    | 0.9475    | 4.28393               | 10.38846             | 8.67     | 28.09     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar)            |
| SE_ResNeXt50_<br>32x4d        | 0.7844    | 0.9396    | 8.74121               | 13.563               | 8.02     | 26.16     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar)        |
| SE_ResNeXt50_vd_<br>32x4d     | 0.8024    | 0.9489    | 9.17134               | 14.76192             | 10.76    | 26.28     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_vd_32x4d_pretrained.tar)     |
| SE_ResNeXt101_<br>32x4d       | 0.7912    | 0.9420    | 18.82604              | 25.31814             | 15.02    | 46.28     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar)       |
| SENet154_vd               | 0.8140    | 0.9548    | 53.79794              | 66.31684             | 45.83    | 114.29    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar)               |


<a name="DPN_and_DenseNet_series"></a>
### DPN and DenseNet series

Accuracy and inference time metrics of DPN and DenseNet series models are shown as follows. More detailed information can be refered to [DPN and DenseNet series tutorial](./docs/en/models/DPN_DenseNet_en.md).


| Model                 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                         |
littletomatodonkey's avatar
littletomatodonkey 已提交
217
|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|
littletomatodonkey's avatar
littletomatodonkey 已提交
218 219 220 221 222 223 224 225 226 227
| DenseNet121 | 0.7566    | 0.9258    | 4.40447               | 9.32623              | 5.69     | 7.98      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar) |
| DenseNet161 | 0.7857    | 0.9414    | 10.39152              | 22.15555             | 15.49    | 28.68     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar) |
| DenseNet169 | 0.7681    | 0.9331    | 6.43598               | 12.98832             | 6.74     | 14.15     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar) |
| DenseNet201 | 0.7763    | 0.9366    | 8.20652               | 17.45838             | 8.61     | 20.01     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar) |
| DenseNet264 | 0.7796    | 0.9385    | 12.14722              | 26.27707             | 11.54    | 33.37     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar) |
| DPN68       | 0.7678    | 0.9343    | 11.64915              | 12.82807             | 4.03     | 10.78     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DPN68_pretrained.tar)       |
| DPN92       | 0.7985    | 0.9480    | 18.15746              | 23.87545             | 12.54    | 36.29     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DPN92_pretrained.tar)       |
| DPN98       | 0.8059    | 0.9510    | 21.18196              | 33.23925             | 22.22    | 58.46     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DPN98_pretrained.tar)       |
| DPN107      | 0.8089    | 0.9532    | 27.62046              | 52.65353             | 35.06    | 82.97     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DPN107_pretrained.tar)      |
| DPN131      | 0.8070    | 0.9514    | 28.33119              | 46.19439             | 30.51    | 75.36     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DPN131_pretrained.tar)      |
D
dyning 已提交
228

littletomatodonkey's avatar
littletomatodonkey 已提交
229 230
<a name="HRNet_series"></a>
### HRNet series
D
dyning 已提交
231

littletomatodonkey's avatar
littletomatodonkey 已提交
232
Accuracy and inference time metrics of HRNet series models are shown as follows. More detailed information can be refered to [Mobile series tutorial](./docs/en/models/HRNet_en.md).
littletomatodonkey's avatar
littletomatodonkey 已提交
233

littletomatodonkey's avatar
littletomatodonkey 已提交
234

littletomatodonkey's avatar
littletomatodonkey 已提交
235
| Model         | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                 |
littletomatodonkey's avatar
littletomatodonkey 已提交
236
|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------|
littletomatodonkey's avatar
littletomatodonkey 已提交
237 238 239 240 241 242 243 244 245 246
| HRNet_W18_C | 0.7692    | 0.9339    | 7.40636          | 13.29752         | 4.14     | 21.29     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar) |
| HRNet_W18_C_ssld | 0.81162    | 0.95804    | 7.40636          | 13.29752         | 4.14     | 21.29     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_ssld_pretrained.tar) |
| HRNet_W30_C | 0.7804    | 0.9402    | 9.57594          | 17.35485         | 16.23    | 37.71     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar) |
| HRNet_W32_C | 0.7828    | 0.9424    | 9.49807          | 17.72921         | 17.86    | 41.23     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar) |
| HRNet_W40_C | 0.7877    | 0.9447    | 12.12202         | 25.68184         | 25.41    | 57.55     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar) |
| HRNet_W44_C | 0.7900    | 0.9451    | 13.19858         | 32.25202         | 29.79    | 67.06     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar) |
| HRNet_W48_C | 0.7895    | 0.9442    | 13.70761         | 34.43572         | 34.58    | 77.47     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar) |
| HRNet_W48_C_ssld | 0.8363    | 0.9682    | 13.70761         | 34.43572         | 34.58    | 77.47     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar) |
| HRNet_W64_C | 0.7930    | 0.9461    | 17.57527         | 47.9533          | 57.83    | 128.06    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar) |

littletomatodonkey's avatar
littletomatodonkey 已提交
247

littletomatodonkey's avatar
littletomatodonkey 已提交
248 249
<a name="Inception_series"></a>
### Inception series
littletomatodonkey's avatar
littletomatodonkey 已提交
250

littletomatodonkey's avatar
littletomatodonkey 已提交
251
Accuracy and inference time metrics of Inception series models are shown as follows. More detailed information can be refered to [Inception series tutorial](./docs/en/models/Inception_en.md).
D
dyning 已提交
252

D
dyning 已提交
253

littletomatodonkey's avatar
littletomatodonkey 已提交
254
| Model                 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                         |
littletomatodonkey's avatar
littletomatodonkey 已提交
255
|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------|
littletomatodonkey's avatar
littletomatodonkey 已提交
256 257 258 259 260 261 262
| GoogLeNet          | 0.7070    | 0.8966    | 1.88038               | 4.48882              | 2.88     | 8.46      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/GoogLeNet_pretrained.tar)          |
| Xception41         | 0.7930    | 0.9453    | 4.96939               | 17.01361             | 16.74    | 22.69     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar)         |
| Xception41_deeplab | 0.7955    | 0.9438    | 5.33541               | 17.55938             | 18.16    | 26.73     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar) |
| Xception65         | 0.8100    | 0.9549    | 7.26158               | 25.88778             | 25.95    | 35.48     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_pretrained.tar)         |
| Xception65_deeplab | 0.8032    | 0.9449    | 7.60208               | 26.03699             | 27.37    | 39.52     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar) |
| Xception71         | 0.8111    | 0.9545    | 8.72457               | 31.55549             | 31.77    | 37.28     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Xception71_pretrained.tar)         |
| InceptionV4        | 0.8077    | 0.9526    | 12.99342              | 25.23416             | 24.57    | 42.68     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar)        |
D
dyning 已提交
263 264


littletomatodonkey's avatar
littletomatodonkey 已提交
265 266
<a name="EfficientNet_and_ResNeXt101_wsl_series"></a>
### EfficientNet and ResNeXt101_wsl series
D
dyning 已提交
267

littletomatodonkey's avatar
littletomatodonkey 已提交
268
Accuracy and inference time metrics of EfficientNet and ResNeXt101_wsl series models are shown as follows. More detailed information can be refered to [EfficientNet and ResNeXt101_wsl series tutorial](./docs/en/models/EfficientNet_and_ResNeXt101_wsl_en.md).
D
dyning 已提交
269 270


littletomatodonkey's avatar
littletomatodonkey 已提交
271
| Model                       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                               |
littletomatodonkey's avatar
littletomatodonkey 已提交
272
|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
littletomatodonkey's avatar
littletomatodonkey 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286
| ResNeXt101_<br>32x8d_wsl      | 0.8255    | 0.9674    | 18.52528         | 34.25319         | 29.14    | 78.44     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar)      |
| ResNeXt101_<br>32x16d_wsl     | 0.8424    | 0.9726    | 25.60395         | 71.88384         | 57.55    | 152.66    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar)     |
| ResNeXt101_<br>32x32d_wsl     | 0.8497    | 0.9759    | 54.87396         | 160.04337        | 115.17   | 303.11    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar)     |
| ResNeXt101_<br>32x48d_wsl     | 0.8537    | 0.9769    | 99.01698256      | 315.91261        | 173.58   | 456.2     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar)     |
| Fix_ResNeXt101_<br>32x48d_wsl | 0.8626    | 0.9797    | 160.0838242      | 595.99296        | 354.23   | 456.2     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar) |
| EfficientNetB0            | 0.7738    | 0.9331    | 3.442            | 6.11476          | 0.72     | 5.1       | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_pretrained.tar)            |
| EfficientNetB1            | 0.7915    | 0.9441    | 5.3322           | 9.41795          | 1.27     | 7.52      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB1_pretrained.tar)            |
| EfficientNetB2            | 0.7985    | 0.9474    | 6.29351          | 10.95702         | 1.85     | 8.81      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB2_pretrained.tar)            |
| EfficientNetB3            | 0.8115    | 0.9541    | 7.67749          | 16.53288         | 3.43     | 11.84     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB3_pretrained.tar)            |
| EfficientNetB4            | 0.8285    | 0.9623    | 12.15894         | 30.94567         | 8.29     | 18.76     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB4_pretrained.tar)            |
| EfficientNetB5            | 0.8362    | 0.9672    | 20.48571         | 61.60252         | 19.51    | 29.61     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB5_pretrained.tar)            |
| EfficientNetB6            | 0.8400    | 0.9688    | 32.62402         | -                | 36.27    | 42        | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB6_pretrained.tar)            |
| EfficientNetB7            | 0.8430    | 0.9689    | 53.93823         | -                | 72.35    | 64.92     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB7_pretrained.tar)            |
| EfficientNetB0_<br>small      | 0.7580    | 0.9258    | 2.3076           | 4.71886          | 0.72     | 4.65      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_small_pretrained.tar)      |
D
dyning 已提交
287

littletomatodonkey's avatar
littletomatodonkey 已提交
288

littletomatodonkey's avatar
littletomatodonkey 已提交
289 290
<a name="ResNeSt_and_RegNet_series"></a>
### ResNeSt and RegNet series
littletomatodonkey's avatar
littletomatodonkey 已提交
291

littletomatodonkey's avatar
littletomatodonkey 已提交
292
Accuracy and inference time metrics of ResNeSt and RegNet series models are shown as follows. More detailed information can be refered to [ResNeSt and RegNet series tutorial](./docs/en/models/ResNeSt_RegNet_en.md).
littletomatodonkey's avatar
littletomatodonkey 已提交
293 294


littletomatodonkey's avatar
littletomatodonkey 已提交
295
| Model                    | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                                 |
littletomatodonkey's avatar
littletomatodonkey 已提交
296
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
littletomatodonkey's avatar
littletomatodonkey 已提交
297 298 299 300 301 302 303
| ResNeSt50_<br>fast_1s1x64d | 0.8035    | 0.9528    | 3.45405                | 8.72680                | 8.68     | 26.3      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_fast_1s1x64d_pretrained.pdparams) |
| ResNeSt50              | 0.8102    | 0.9542    | 6.69042    | 8.01664                | 10.78    | 27.5      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_pretrained.pdparams)              |
| RegNetX_4GF            | 0.785     | 0.9416    |    6.46478              |      11.19862           | 8        | 22.1      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/RegNetX_4GF_pretrained.pdparams)            |


<a name="License"></a>
## License
littletomatodonkey's avatar
littletomatodonkey 已提交
304

littletomatodonkey's avatar
littletomatodonkey 已提交
305
PaddleClas is released under the <a href="https://github.com/PaddlePaddle/PaddleClas/blob/master/LICENSE">Apache 2.0 license</a>
littletomatodonkey's avatar
littletomatodonkey 已提交
306

D
dyning 已提交
307

littletomatodonkey's avatar
littletomatodonkey 已提交
308 309
<a name="Contribution"></a>
## Contribution
D
dyning 已提交
310

littletomatodonkey's avatar
littletomatodonkey 已提交
311
Contributions are highly welcomed and we would really appreciate your feedback!!
littletomatodonkey's avatar
littletomatodonkey 已提交
312

littletomatodonkey's avatar
littletomatodonkey 已提交
313 314
- Thank [nblib](https://github.com/nblib) to fix bug of RandErasing.
- Thank [chenpy228](https://github.com/chenpy228) to fix some typos PaddleClas.