engine.py 18.4 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

D
dongshuilong 已提交
17
import os
D
dongshuilong 已提交
18 19 20 21
import platform
import paddle
import paddle.distributed as dist
from visualdl import LogWriter
D
dongshuilong 已提交
22
from paddle import nn
D
dongshuilong 已提交
23 24
import numpy as np
import random
D
dongshuilong 已提交
25 26 27 28 29 30 31

from ppcls.utils.check import check_gpu
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger
from ppcls.utils.logger import init_logger
from ppcls.utils.config import print_config
from ppcls.data import build_dataloader
W
dbg  
weishengyu 已提交
32
from ppcls.arch import build_model, RecModel, DistillationModel, TheseusLayer
D
dongshuilong 已提交
33 34 35 36 37 38 39 40 41 42 43
from ppcls.arch import apply_to_static
from ppcls.loss import build_loss
from ppcls.metric import build_metrics
from ppcls.optimizer import build_optimizer
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
from ppcls.utils.save_load import init_model
from ppcls.utils import save_load

from ppcls.data.utils.get_image_list import get_image_list
from ppcls.data.postprocess import build_postprocess
from ppcls.data import create_operators
D
dongshuilong 已提交
44 45
from ppcls.engine.train import train_epoch
from ppcls.engine import evaluation
D
dongshuilong 已提交
46 47 48
from ppcls.arch.gears.identity_head import IdentityHead


D
dongshuilong 已提交
49
class Engine(object):
D
dongshuilong 已提交
50
    def __init__(self, config, mode="train"):
D
dongshuilong 已提交
51
        assert mode in ["train", "eval", "infer", "export"]
D
dongshuilong 已提交
52 53 54 55
        self.mode = mode
        self.config = config
        self.eval_mode = self.config["Global"].get("eval_mode",
                                                   "classification")
56 57
        if "Head" in self.config["Arch"] or self.config["Arch"].get("is_rec",
                                                                    False):
D
dongshuilong 已提交
58 59 60 61
            self.is_rec = True
        else:
            self.is_rec = False

D
dongshuilong 已提交
62 63
        # set seed
        seed = self.config["Global"].get("seed", False)
S
stephon 已提交
64
        if seed or seed == 0:
D
dongshuilong 已提交
65 66 67 68 69
            assert isinstance(seed, int), "The 'seed' must be a integer!"
            paddle.seed(seed)
            np.random.seed(seed)
            random.seed(seed)

D
dongshuilong 已提交
70 71 72 73 74 75 76 77
        # init logger
        self.output_dir = self.config['Global']['output_dir']
        log_file = os.path.join(self.output_dir, self.config["Arch"]["name"],
                                f"{mode}.log")
        init_logger(name='root', log_file=log_file)
        print_config(config)

        # init train_func and eval_func
D
dongshuilong 已提交
78 79
        assert self.eval_mode in ["classification", "retrieval"], logger.error(
            "Invalid eval mode: {}".format(self.eval_mode))
D
dongshuilong 已提交
80 81 82
        self.train_epoch_func = train_epoch
        self.eval_func = getattr(evaluation, self.eval_mode + "_eval")

D
dongshuilong 已提交
83 84 85 86 87 88 89 90 91 92 93
        self.use_dali = self.config['Global'].get("use_dali", False)

        # for visualdl
        self.vdl_writer = None
        if self.config['Global']['use_visualdl'] and mode == "train":
            vdl_writer_path = os.path.join(self.output_dir, "vdl")
            if not os.path.exists(vdl_writer_path):
                os.makedirs(vdl_writer_path)
            self.vdl_writer = LogWriter(logdir=vdl_writer_path)

        # set device
R
ronnywang 已提交
94
        assert self.config["Global"]["device"] in ["cpu", "gpu", "xpu", "npu"]
D
dongshuilong 已提交
95 96 97 98 99
        self.device = paddle.set_device(self.config["Global"]["device"])
        logger.info('train with paddle {} and device {}'.format(
            paddle.__version__, self.device))

        # AMP training
G
gaotingquan 已提交
100
        self.amp = True if "AMP" in self.config and self.mode == "train" else False
D
dongshuilong 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114
        if self.amp and self.config["AMP"] is not None:
            self.scale_loss = self.config["AMP"].get("scale_loss", 1.0)
            self.use_dynamic_loss_scaling = self.config["AMP"].get(
                "use_dynamic_loss_scaling", False)
        else:
            self.scale_loss = 1.0
            self.use_dynamic_loss_scaling = False
        if self.amp:
            AMP_RELATED_FLAGS_SETTING = {
                'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
                'FLAGS_max_inplace_grad_add': 8,
            }
            paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING)

115
        #TODO(gaotingquan): support rec
G
gaotingquan 已提交
116 117
        class_num = config["Arch"].get("class_num", None)
        self.config["DataLoader"].update({"class_num": class_num})
D
dongshuilong 已提交
118 119 120 121
        # build dataloader
        if self.mode == 'train':
            self.train_dataloader = build_dataloader(
                self.config["DataLoader"], "Train", self.device, self.use_dali)
D
dongshuilong 已提交
122 123
        if self.mode == "eval" or (self.mode == "train" and
                                   self.config["Global"]["eval_during_train"]):
D
dongshuilong 已提交
124 125 126 127 128
            if self.eval_mode == "classification":
                self.eval_dataloader = build_dataloader(
                    self.config["DataLoader"], "Eval", self.device,
                    self.use_dali)
            elif self.eval_mode == "retrieval":
129 130 131 132 133 134 135 136 137 138 139 140 141
                self.gallery_query_dataloader = None
                if len(self.config["DataLoader"]["Eval"].keys()) == 1:
                    key = list(self.config["DataLoader"]["Eval"].keys())[0]
                    self.gallery_query_dataloader = build_dataloader(
                        self.config["DataLoader"]["Eval"], key, self.device,
                        self.use_dali)
                else:
                    self.gallery_dataloader = build_dataloader(
                        self.config["DataLoader"]["Eval"], "Gallery",
                        self.device, self.use_dali)
                    self.query_dataloader = build_dataloader(
                        self.config["DataLoader"]["Eval"], "Query",
                        self.device, self.use_dali)
D
dongshuilong 已提交
142 143 144 145 146

        # build loss
        if self.mode == "train":
            loss_info = self.config["Loss"]["Train"]
            self.train_loss_func = build_loss(loss_info)
D
dongshuilong 已提交
147 148
        if self.mode == "eval" or (self.mode == "train" and
                                   self.config["Global"]["eval_during_train"]):
D
dongshuilong 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            loss_config = self.config.get("Loss", None)
            if loss_config is not None:
                loss_config = loss_config.get("Eval")
                if loss_config is not None:
                    self.eval_loss_func = build_loss(loss_config)
                else:
                    self.eval_loss_func = None
            else:
                self.eval_loss_func = None

        # build metric
        if self.mode == 'train':
            metric_config = self.config.get("Metric")
            if metric_config is not None:
                metric_config = metric_config.get("Train")
                if metric_config is not None:
165
                    if hasattr(self.train_dataloader, "collate_fn"):
166 167 168 169 170 171
                        for m_idx, m in enumerate(metric_config):
                            if "TopkAcc" in m:
                                msg = f"'TopkAcc' metric can not be used when setting 'batch_transform_ops' in config. The 'TopkAcc' metric has been removed."
                                logger.warning(msg)
                                break
                        metric_config.pop(m_idx)
D
dongshuilong 已提交
172 173 174 175 176 177
                    self.train_metric_func = build_metrics(metric_config)
                else:
                    self.train_metric_func = None
        else:
            self.train_metric_func = None

D
dongshuilong 已提交
178 179
        if self.mode == "eval" or (self.mode == "train" and
                                   self.config["Global"]["eval_during_train"]):
D
dongshuilong 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
            metric_config = self.config.get("Metric")
            if self.eval_mode == "classification":
                if metric_config is not None:
                    metric_config = metric_config.get("Eval")
                    if metric_config is not None:
                        self.eval_metric_func = build_metrics(metric_config)
            elif self.eval_mode == "retrieval":
                if metric_config is None:
                    metric_config = [{"name": "Recallk", "topk": (1, 5)}]
                else:
                    metric_config = metric_config["Eval"]
                self.eval_metric_func = build_metrics(metric_config)
        else:
            self.eval_metric_func = None

        # build model
W
weishengyu 已提交
196
        self.model = build_model(self.config)
D
dongshuilong 已提交
197 198
        # set @to_static for benchmark, skip this by default.
        apply_to_static(self.config, self.model)
D
dongshuilong 已提交
199

D
dongshuilong 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212
        # load_pretrain
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
                    self.model, self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
                    self.model, self.config["Global"]["pretrained_model"])

        # build optimizer
        if self.mode == 'train':
            self.optimizer, self.lr_sch = build_optimizer(
                self.config["Optimizer"], self.config["Global"]["epochs"],
G
gaotingquan 已提交
213
                len(self.train_dataloader), [self.model])
214

Z
zhangbo9674 已提交
215 216 217 218 219
        # for amp training
        if self.amp:
            self.scaler = paddle.amp.GradScaler(
                init_loss_scaling=self.scale_loss,
                use_dynamic_loss_scaling=self.use_dynamic_loss_scaling)
220 221 222 223 224 225
            amp_level = self.config['AMP'].get("level", "O1")
            if amp_level not in ["O1", "O2"]:
                msg = "[Parameter Error]: The optimize level of AMP only support 'O1' and 'O2'. The level has been set 'O1'."
                logger.warning(msg)
                self.config['AMP']["level"] = "O1"
                amp_level = "O1"
G
gaotingquan 已提交
226 227 228 229 230
            self.model, self.optimizer = paddle.amp.decorate(
                models=self.model,
                optimizers=self.optimizer,
                level=amp_level,
                save_dtype='float32')
D
dongshuilong 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

        # for distributed
        self.config["Global"][
            "distributed"] = paddle.distributed.get_world_size() != 1
        if self.config["Global"]["distributed"]:
            dist.init_parallel_env()
        if self.config["Global"]["distributed"]:
            self.model = paddle.DataParallel(self.model)

        # build postprocess for infer
        if self.mode == 'infer':
            self.preprocess_func = create_operators(self.config["Infer"][
                "transforms"])
            self.postprocess_func = build_postprocess(self.config["Infer"][
                "PostProcess"])

    def train(self):
        assert self.mode == "train"
        print_batch_step = self.config['Global']['print_batch_step']
        save_interval = self.config["Global"]["save_interval"]
        best_metric = {
            "metric": 0.0,
            "epoch": 0,
        }
        # key:
        # val: metrics list word
        self.output_info = dict()
        self.time_info = {
            "batch_cost": AverageMeter(
                "batch_cost", '.5f', postfix=" s,"),
            "reader_cost": AverageMeter(
                "reader_cost", ".5f", postfix=" s,"),
        }
        # global iter counter
        self.global_step = 0

        if self.config["Global"]["checkpoints"] is not None:
            metric_info = init_model(self.config["Global"], self.model,
                                     self.optimizer)
            if metric_info is not None:
                best_metric.update(metric_info)

        self.max_iter = len(self.train_dataloader) - 1 if platform.system(
        ) == "Windows" else len(self.train_dataloader)
        for epoch_id in range(best_metric["epoch"] + 1,
                              self.config["Global"]["epochs"] + 1):
            acc = 0.0
            # for one epoch train
D
dongshuilong 已提交
279
            self.train_epoch_func(self, epoch_id, print_batch_step)
D
dongshuilong 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

            if self.use_dali:
                self.train_dataloader.reset()
            metric_msg = ", ".join([
                "{}: {:.5f}".format(key, self.output_info[key].avg)
                for key in self.output_info
            ])
            logger.info("[Train][Epoch {}/{}][Avg]{}".format(
                epoch_id, self.config["Global"]["epochs"], metric_msg))
            self.output_info.clear()

            # eval model and save model if possible
            if self.config["Global"][
                    "eval_during_train"] and epoch_id % self.config["Global"][
                        "eval_interval"] == 0:
                acc = self.eval(epoch_id)
                if acc > best_metric["metric"]:
                    best_metric["metric"] = acc
                    best_metric["epoch"] = epoch_id
                    save_load.save_model(
                        self.model,
                        self.optimizer,
                        best_metric,
                        self.output_dir,
                        model_name=self.config["Arch"]["name"],
                        prefix="best_model")
                logger.info("[Eval][Epoch {}][best metric: {}]".format(
                    epoch_id, best_metric["metric"]))
                logger.scaler(
                    name="eval_acc",
                    value=acc,
                    step=epoch_id,
                    writer=self.vdl_writer)

                self.model.train()

            # save model
            if epoch_id % save_interval == 0:
                save_load.save_model(
                    self.model,
                    self.optimizer, {"metric": acc,
                                     "epoch": epoch_id},
                    self.output_dir,
                    model_name=self.config["Arch"]["name"],
                    prefix="epoch_{}".format(epoch_id))
G
gaotingquan 已提交
325 326 327 328 329 330 331 332
            # save the latest model
            save_load.save_model(
                self.model,
                self.optimizer, {"metric": acc,
                                 "epoch": epoch_id},
                self.output_dir,
                model_name=self.config["Arch"]["name"],
                prefix="latest")
D
dongshuilong 已提交
333 334 335 336 337 338 339 340

        if self.vdl_writer is not None:
            self.vdl_writer.close()

    @paddle.no_grad()
    def eval(self, epoch_id=0):
        assert self.mode in ["train", "eval"]
        self.model.eval()
D
dongshuilong 已提交
341
        eval_result = self.eval_func(self, epoch_id)
D
dongshuilong 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
        self.model.train()
        return eval_result

    @paddle.no_grad()
    def infer(self):
        assert self.mode == "infer" and self.eval_mode == "classification"
        total_trainer = paddle.distributed.get_world_size()
        local_rank = paddle.distributed.get_rank()
        image_list = get_image_list(self.config["Infer"]["infer_imgs"])
        # data split
        image_list = image_list[local_rank::total_trainer]

        batch_size = self.config["Infer"]["batch_size"]
        self.model.eval()
        batch_data = []
        image_file_list = []
        for idx, image_file in enumerate(image_list):
            with open(image_file, 'rb') as f:
                x = f.read()
            for process in self.preprocess_func:
                x = process(x)
            batch_data.append(x)
            image_file_list.append(image_file)
            if len(batch_data) >= batch_size or idx == len(image_list) - 1:
                batch_tensor = paddle.to_tensor(batch_data)
                out = self.model(batch_tensor)
                if isinstance(out, list):
                    out = out[0]
370 371 372
                if isinstance(out, dict) and "logits" in out:
                    out = out["logits"]
                if isinstance(out, dict) and "output" in out:
W
dbg  
weishengyu 已提交
373
                    out = out["output"]
D
dongshuilong 已提交
374 375 376 377 378 379 380
                result = self.postprocess_func(out, image_file_list)
                print(result)
                batch_data.clear()
                image_file_list.clear()

    def export(self):
        assert self.mode == "export"
C
cuicheng01 已提交
381 382
        use_multilabel = self.config["Global"].get("use_multilabel", False)
        model = ExportModel(self.config["Arch"], self.model, use_multilabel)
D
dongshuilong 已提交
383 384 385 386 387
        if self.config["Global"]["pretrained_model"] is not None:
            load_dygraph_pretrain(model.base_model,
                                  self.config["Global"]["pretrained_model"])

        model.eval()
D
dongshuilong 已提交
388 389
        save_path = os.path.join(self.config["Global"]["save_inference_dir"],
                                 "inference")
W
weishengyu 已提交
390
        if model.quanter:
W
weishengyu 已提交
391
            model.quanter.save_quantized_model(
C
cuicheng01 已提交
392
                model.base_model,
D
dongshuilong 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
                save_path,
                input_spec=[
                    paddle.static.InputSpec(
                        shape=[None] + self.config["Global"]["image_shape"],
                        dtype='float32')
                ])
        else:
            model = paddle.jit.to_static(
                model,
                input_spec=[
                    paddle.static.InputSpec(
                        shape=[None] + self.config["Global"]["image_shape"],
                        dtype='float32')
                ])
            paddle.jit.save(model, save_path)
D
dongshuilong 已提交
408 409


W
dbg  
weishengyu 已提交
410
class ExportModel(TheseusLayer):
D
dongshuilong 已提交
411 412 413 414
    """
    ExportModel: add softmax onto the model
    """

C
cuicheng01 已提交
415
    def __init__(self, config, model, use_multilabel):
D
dongshuilong 已提交
416 417 418 419 420 421 422 423 424 425 426 427
        super().__init__()
        self.base_model = model
        # we should choose a final model to export
        if isinstance(self.base_model, DistillationModel):
            self.infer_model_name = config["infer_model_name"]
        else:
            self.infer_model_name = None

        self.infer_output_key = config.get("infer_output_key", None)
        if self.infer_output_key == "features" and isinstance(self.base_model,
                                                              RecModel):
            self.base_model.head = IdentityHead()
C
cuicheng01 已提交
428 429
        if use_multilabel:
            self.out_act = nn.Sigmoid()
D
dongshuilong 已提交
430
        else:
C
cuicheng01 已提交
431 432 433 434
            if config.get("infer_add_softmax", True):
                self.out_act = nn.Softmax(axis=-1)
            else:
                self.out_act = None
D
dongshuilong 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

    def eval(self):
        self.training = False
        for layer in self.sublayers():
            layer.training = False
            layer.eval()

    def forward(self, x):
        x = self.base_model(x)
        if isinstance(x, list):
            x = x[0]
        if self.infer_model_name is not None:
            x = x[self.infer_model_name]
        if self.infer_output_key is not None:
            x = x[self.infer_output_key]
C
cuicheng01 已提交
450 451
        if self.out_act is not None:
            x = self.out_act(x)
D
dongshuilong 已提交
452
        return x