multilabel_dataset.py 2.2 KB
Newer Older
F
Felix 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import io
import tarfile
import numpy as np
from PIL import Image  #all use default backend

import paddle
from paddle.io import Dataset
import pickle
import os
import cv2
import random

from ppcls.data import preprocess
from ppcls.data.preprocess import transform
from ppcls.utils import logger

F
Felix 已提交
33
from .common_dataset import CommonDataset
F
Felix 已提交
34

F
Felix 已提交
35
class MultiLabelDataset(CommonDataset):
F
Felix 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

    def _load_anno(self):
        assert os.path.exists(self._cls_path)
        assert os.path.exists(self._img_root)
        self.images = []
        self.labels = []
        with open(self._cls_path) as fd:
            lines = fd.readlines()
            for l in lines:
                l = l.strip().split(" ")
                self.images.append(os.path.join(self._img_root, l[0]))

                labels = l[1].split(',')
                labels = [int(i) for i in labels]

                self.labels.append(labels)
                assert os.path.exists(self.images[-1])

    def __getitem__(self, idx):
        try:
            img = cv2.imread(self.images[idx])
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            if self._transform_ops:
                img = transform(img, self._transform_ops)
            img = img.transpose((2, 0, 1))
            label = np.array(self.labels[idx]).astype("float32")
            return (img, label)
        except Exception as ex:
            logger.error("Exception occured when parse line: {} with msg: {}".
                         format(self.images[idx], ex))
            rnd_idx = np.random.randint(self.__len__())
            return self.__getitem__(rnd_idx)