efficientnetlite.py 21.8 KB
Newer Older
S
shippingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import re
import math
import copy

import paddle.fluid as fluid

from .layers import conv2d, init_batch_norm_layer, init_fc_layer

__all__ = [
    'EfficientNetLite', 'EfficientNetLite0', 'EfficientNetLite1',
    'EfficientNetLite2', 'EfficientNetLite3', 'EfficientNetLite4'
]

GlobalParams = collections.namedtuple('GlobalParams', [
    'batch_norm_momentum', 'batch_norm_epsilon', 'dropout_rate', 'num_classes',
    'width_coefficient', 'depth_coefficient', 'depth_divisor', 'min_depth',
    'drop_connect_rate', 'fix_head_stem', 'relu_fn', 'local_pooling'
])

BlockArgs = collections.namedtuple('BlockArgs', [
    'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
    'expand_ratio', 'id_skip', 'stride', 'se_ratio'
])

GlobalParams.__new__.__defaults__ = (None, ) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None, ) * len(BlockArgs._fields)


def efficientnet_lite_params(model_name):
    """ Map EfficientNet model name to parameter coefficients. """
    params_dict = {
        # Coefficients:   width,depth,resolution,dropout
        'efficientnet-lite0': (1.0, 1.0, 224, 0.2),
        'efficientnet-lite1': (1.0, 1.1, 240, 0.2),
        'efficientnet-lite2': (1.1, 1.2, 260, 0.3),
        'efficientnet-lite3': (1.2, 1.4, 280, 0.3),
        'efficientnet-lite4': (1.4, 1.8, 300, 0.3),
    }
    return params_dict[model_name]


def efficientnet_lite(width_coefficient=None,
                      depth_coefficient=None,
                      dropout_rate=0.2,
                      drop_connect_rate=0.2):
    """ Get block arguments according to parameter and coefficients. """
    blocks_args = [
        'r1_k3_s11_e1_i32_o16_se0.25',
        'r2_k3_s22_e6_i16_o24_se0.25',
        'r2_k5_s22_e6_i24_o40_se0.25',
        'r3_k3_s22_e6_i40_o80_se0.25',
        'r3_k5_s11_e6_i80_o112_se0.25',
        'r4_k5_s22_e6_i112_o192_se0.25',
        'r1_k3_s11_e6_i192_o320_se0.25',
    ]
    blocks_args = BlockDecoder.decode(blocks_args)

    global_params = GlobalParams(
        batch_norm_momentum=0.99,
        batch_norm_epsilon=1e-3,
        dropout_rate=dropout_rate,
        drop_connect_rate=drop_connect_rate,
        num_classes=1000,
        width_coefficient=width_coefficient,
        depth_coefficient=depth_coefficient,
        depth_divisor=8,
        min_depth=None,
        # FOR LITE, use relu6 for easier quantization
        relu_fn=True,
        # FOR LITE, Don't scale in Lite model
        fix_head_stem=True,
        # FOR LITE,
        local_pooling=True)

    return blocks_args, global_params


def get_model_params(model_name, override_params):
    """ Get the block args and global params for a given model """
    if model_name.startswith('efficientnet-lite'):
        w, d, _, p = efficientnet_lite_params(model_name)
        blocks_args, global_params = efficientnet_lite(
            width_coefficient=w, depth_coefficient=d, dropout_rate=p)
    else:
        raise NotImplementedError('model name is not pre-defined: %s' %
                                  model_name)
    if override_params:
        global_params = global_params._replace(**override_params)
    return blocks_args, global_params


def round_filters(filters, global_params, skip=False):
    """ Calculate and round number of filters based on depth multiplier. """
    multiplier = global_params.width_coefficient
    if skip or not multiplier:
        return filters
    divisor = global_params.depth_divisor
    min_depth = global_params.min_depth
    filters *= multiplier
    min_depth = min_depth or divisor
    new_filters = max(min_depth,
                      int(filters + divisor / 2) // divisor * divisor)
    if new_filters < 0.9 * filters:  # prevent rounding by more than 10%
        new_filters += divisor
    return int(new_filters)


def round_repeats(repeats, global_params, skip=False):
    """ Round number of filters based on depth multiplier. """
    multiplier = global_params.depth_coefficient
    if skip or not multiplier:
        return repeats
    return int(math.ceil(multiplier * repeats))


class EfficientNetLite():
    def __init__(
            self,
            name='lite0',
            padding_type='SAME',
            override_params=None,
            is_test=False,
            # For Lite, Don't use SE
            use_se=False):
        valid_names = ['lite' + str(i) for i in range(5)]
        assert name in valid_names, 'efficientlite name should be in b0~b7'
        model_name = 'efficientnet-' + name
        self._blocks_args, self._global_params = get_model_params(
            model_name, override_params)
        print("global_params", self._global_params)
        self._bn_mom = self._global_params.batch_norm_momentum
        self._bn_eps = self._global_params.batch_norm_epsilon
        self.is_test = is_test
        self.padding_type = padding_type
        self.use_se = use_se
        self._relu_fn = self._global_params.relu_fn
        self._fix_head_stem = self._global_params.fix_head_stem
        self.local_pooling = self._global_params.local_pooling
        # NCHW spatial: HW
        self._spatial_dims = [2, 3]

    def net(self, input, class_dim=1000, is_test=False):

        conv = self.extract_features(input, is_test=is_test)

        out_channels = round_filters(1280, self._global_params,
                                     self._fix_head_stem)
        conv = self.conv_bn_layer(
            conv,
            num_filters=out_channels,
            filter_size=1,
            bn_act='relu6' if self._relu_fn else 'swish',  # for lite
            bn_mom=self._bn_mom,
            bn_eps=self._bn_eps,
            padding_type=self.padding_type,
            name='',
            conv_name='_conv_head',
            bn_name='_bn1')

        pool = fluid.layers.pool2d(
            input=conv, pool_type='avg', global_pooling=True, use_cudnn=False)

        if self._global_params.dropout_rate:
            pool = fluid.layers.dropout(
                pool,
                self._global_params.dropout_rate,
                dropout_implementation='upscale_in_train')

        param_attr, bias_attr = init_fc_layer(class_dim, '_fc')
        out = fluid.layers.fc(pool,
                              class_dim,
                              name='_fc',
                              param_attr=param_attr,
                              bias_attr=bias_attr)
        return out

    def _drop_connect(self, inputs, prob, is_test):
        if is_test:
            return inputs
        keep_prob = 1.0 - prob
        inputs_shape = fluid.layers.shape(inputs)
        random_tensor = keep_prob + fluid.layers.uniform_random(
            shape=[inputs_shape[0], 1, 1, 1], min=0., max=1.)
        binary_tensor = fluid.layers.floor(random_tensor)
        output = inputs / keep_prob * binary_tensor
        return output

    def _expand_conv_norm(self, inputs, block_args, is_test, name=None):
        # Expansion phase
        oup = block_args.input_filters * \
            block_args.expand_ratio  # number of output channels

        if block_args.expand_ratio != 1:
            conv = self.conv_bn_layer(
                inputs,
                num_filters=oup,
                filter_size=1,
                bn_act=None,
                bn_mom=self._bn_mom,
                bn_eps=self._bn_eps,
                padding_type=self.padding_type,
                name=name,
                conv_name=name + '_expand_conv',
                bn_name='_bn0')

        return conv

    def _depthwise_conv_norm(self, inputs, block_args, is_test, name=None):
        k = block_args.kernel_size
        s = block_args.stride
        if isinstance(s, list) or isinstance(s, tuple):
            s = s[0]
        oup = block_args.input_filters * \
            block_args.expand_ratio  # number of output channels

        conv = self.conv_bn_layer(
            inputs,
            num_filters=oup,
            filter_size=k,
            stride=s,
            num_groups=oup,
            bn_act=None,
            padding_type=self.padding_type,
            bn_mom=self._bn_mom,
            bn_eps=self._bn_eps,
            name=name,
            use_cudnn=False,
            conv_name=name + '_depthwise_conv',
            bn_name='_bn1')

        return conv

    def _project_conv_norm(self, inputs, block_args, is_test, name=None):
        final_oup = block_args.output_filters
        conv = self.conv_bn_layer(
            inputs,
            num_filters=final_oup,
            filter_size=1,
            bn_act=None,
            padding_type=self.padding_type,
            bn_mom=self._bn_mom,
            bn_eps=self._bn_eps,
            name=name,
            conv_name=name + '_project_conv',
            bn_name='_bn2')
        return conv

    def conv_bn_layer(
            self,
            input,
            filter_size,
            num_filters,
            stride=1,
            num_groups=1,
            padding_type="SAME",
            conv_act=None,
            bn_act='relu6',  # if self._relu_fn else 'swish',
            use_cudnn=True,
            use_bn=True,
            bn_mom=0.9,
            bn_eps=1e-05,
            use_bias=False,
            name=None,
            conv_name=None,
            bn_name=None):
        conv = conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            groups=num_groups,
            act=conv_act,
            padding_type=padding_type,
            use_cudnn=use_cudnn,
            name=conv_name,
            use_bias=use_bias)

        if use_bn is False:
            return conv
        else:
            bn_name = name + bn_name
            param_attr, bias_attr = init_batch_norm_layer(bn_name)
            return fluid.layers.batch_norm(
                input=conv,
                act=bn_act,
                momentum=bn_mom,
                epsilon=bn_eps,
                name=bn_name,
                moving_mean_name=bn_name + '_mean',
                moving_variance_name=bn_name + '_variance',
                param_attr=param_attr,
                bias_attr=bias_attr)

    def _conv_stem_norm(self, inputs, is_test):
        out_channels = round_filters(32, self._global_params,
                                     self._fix_head_stem)
        bn = self.conv_bn_layer(
            inputs,
            num_filters=out_channels,
            filter_size=3,
            stride=2,
            bn_act=None,
            bn_mom=self._bn_mom,
            padding_type=self.padding_type,
            bn_eps=self._bn_eps,
            name='',
            conv_name='_conv_stem',
            bn_name='_bn0')

        return bn

    def mb_conv_block(self,
                      inputs,
                      block_args,
                      is_test=False,
                      drop_connect_rate=None,
                      name=None):
        # Expansion and Depthwise Convolution
        oup = block_args.input_filters * \
            block_args.expand_ratio  # number of output channels
        has_se = self.use_se and (block_args.se_ratio is not None) and (
            0 < block_args.se_ratio <= 1)
        id_skip = block_args.id_skip  # skip connection and drop connect
        conv = inputs
        if block_args.expand_ratio != 1:
            if self._relu_fn:
                conv = fluid.layers.relu6(
                    self._expand_conv_norm(conv, block_args, is_test, name))
            else:
                conv = fluid.layers.swish(
                    self._expand_conv_norm(conv, block_args, is_test, name))

        if self._relu_fn:
            conv = fluid.layers.relu6(
                self._depthwise_conv_norm(conv, block_args, is_test, name))
        else:
            conv = fluid.layers.swish(
                self._depthwise_conv_norm(conv, block_args, is_test, name))

        # Squeeze and Excitation
        if has_se:
            num_squeezed_channels = max(
                1, int(block_args.input_filters * block_args.se_ratio))
            conv = self.se_block(conv, num_squeezed_channels, oup, name)

        conv = self._project_conv_norm(conv, block_args, is_test, name)

        # Skip connection and drop connect
        input_filters = block_args.input_filters
        output_filters = block_args.output_filters
        if id_skip and \
                block_args.stride == 1 and \
                input_filters == output_filters:
            if drop_connect_rate:
                conv = self._drop_connect(conv, drop_connect_rate,
                                          self.is_test)
            conv = fluid.layers.elementwise_add(conv, inputs)

        return conv

    def se_block(self, inputs, num_squeezed_channels, oup, name):

        if self.local_pooling:
            shape = inputs.shape
            x_squeezed = fluid.layers.pool2d(
                input=inputs,
                pool_size=[
                    shape[self._spatial_dims[0]], shape[self._spatial_dims[1]]
                ],
                pool_stride=[1, 1],
                pool_padding='VALID')
        else:
            # same as tf: reduce_sum
            x_squeezed = fluid.layers.pool2d(
                input=inputs,
                pool_type='avg',
                global_pooling=True,
                use_cudnn=False)
        x_squeezed = conv2d(
            x_squeezed,
            num_filters=num_squeezed_channels,
            filter_size=1,
            use_bias=True,
            padding_type=self.padding_type,
            act='relu6' if self._relu_fn else 'swish',
            name=name + '_se_reduce')
        x_squeezed = conv2d(
            x_squeezed,
            num_filters=oup,
            filter_size=1,
            use_bias=True,
            padding_type=self.padding_type,
            name=name + '_se_expand')
        #se_out = inputs * fluid.layers.sigmoid(x_squeezed)
        se_out = fluid.layers.elementwise_mul(
            inputs, fluid.layers.sigmoid(x_squeezed), axis=-1)
        return se_out

    def extract_features(self, inputs, is_test):
        """ Returns output of the final convolution layer """

        if self._relu_fn:
            conv = fluid.layers.relu6(
                self._conv_stem_norm(
                    inputs, is_test=is_test))
        else:
            fluid.layers.swish(self._conv_stem_norm(inputs, is_test=is_test))

        block_args_copy = copy.deepcopy(self._blocks_args)
        idx = 0
        block_size = 0
        for i, block_arg in enumerate(block_args_copy):
            block_arg = block_arg._replace(
                input_filters=round_filters(block_arg.input_filters,
                                            self._global_params),
                output_filters=round_filters(block_arg.output_filters,
                                             self._global_params),
                # Lite
                num_repeat=block_arg.num_repeat if self._fix_head_stem and
                (i == 0 or i == len(block_args_copy) - 1) else round_repeats(
                    block_arg.num_repeat, self._global_params))

            block_size += 1
            for _ in range(block_arg.num_repeat - 1):
                block_size += 1

        for i, block_args in enumerate(self._blocks_args):

            # Update block input and output filters based on depth multiplier.
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters,
                                            self._global_params),
                output_filters=round_filters(block_args.output_filters,
                                             self._global_params),

                # Lite
                num_repeat=block_args.num_repeat if self._fix_head_stem and
                (i == 0 or i == len(self._blocks_args) - 1) else
                round_repeats(block_args.num_repeat, self._global_params))

            # The first block needs to take care of stride,
            # and filter size increase.
            drop_connect_rate = self._global_params.drop_connect_rate
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / block_size
            conv = self.mb_conv_block(conv, block_args, is_test,
                                      drop_connect_rate,
                                      '_blocks.' + str(idx) + '.')

            idx += 1
            if block_args.num_repeat > 1:
                block_args = block_args._replace(
                    input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                drop_connect_rate = self._global_params.drop_connect_rate
                if drop_connect_rate:
                    drop_connect_rate *= float(idx) / block_size
                conv = self.mb_conv_block(conv, block_args, is_test,
                                          drop_connect_rate,
                                          '_blocks.' + str(idx) + '.')
                idx += 1

        return conv

    def shortcut(self, input, data_residual):
        return fluid.layers.elementwise_add(input, data_residual)


class BlockDecoder(object):
    """
    Block Decoder, straight from the official TensorFlow repository.
    """

    @staticmethod
    def _decode_block_string(block_string):
        """ Gets a block through a string notation of arguments. """
        assert isinstance(block_string, str)

        ops = block_string.split('_')
        options = {}
        for op in ops:
            splits = re.split(r'(\d.*)', op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

        # Check stride
        cond_1 = ('s' in options and len(options['s']) == 1)
        cond_2 = ((len(options['s']) == 2) and
                  (options['s'][0] == options['s'][1]))
        assert (cond_1 or cond_2)

        return BlockArgs(
            kernel_size=int(options['k']),
            num_repeat=int(options['r']),
            input_filters=int(options['i']),
            output_filters=int(options['o']),
            expand_ratio=int(options['e']),
            id_skip=('noskip' not in block_string),
            se_ratio=float(options['se']) if 'se' in options else None,
            stride=[int(options['s'][0])])

    @staticmethod
    def _encode_block_string(block):
        """Encodes a block to a string."""
        args = [
            'r%d' % block.num_repeat, 'k%d' % block.kernel_size, 's%d%d' %
            (block.strides[0], block.strides[1]), 'e%s' % block.expand_ratio,
            'i%d' % block.input_filters, 'o%d' % block.output_filters
        ]
        if 0 < block.se_ratio <= 1:
            args.append('se%s' % block.se_ratio)
        if block.id_skip is False:
            args.append('noskip')
        return '_'.join(args)

    @staticmethod
    def decode(string_list):
        """
        Decode a list of string notations to specify blocks in the network.

        string_list: list of strings, each string is a notation of block
        return
            list of BlockArgs namedtuples of block args
        """
        assert isinstance(string_list, list)
        blocks_args = []
        for block_string in string_list:
            blocks_args.append(BlockDecoder._decode_block_string(block_string))
        return blocks_args

    @staticmethod
    def encode(blocks_args):
        """
        Encodes a list of BlockArgs to a list of strings.

        :param blocks_args: a list of BlockArgs namedtuples of block args
        :return: a list of strings, each string is a notation of block
        """
        block_strings = []
        for block in blocks_args:
            block_strings.append(BlockDecoder._encode_block_string(block))
        return block_strings


def EfficientNetLite0(is_test=False,
                      padding_type='SAME',
                      override_params=None,
                      use_se=True):
    model = EfficientNetLite(
        name='lite0',
        is_test=is_test,
        padding_type=padding_type,
        override_params=override_params,
        use_se=use_se)
    return model


def EfficientNetLite1(is_test=False,
                      padding_type='SAME',
                      override_params=None,
                      use_se=True):
    model = EfficientNetLite(
        name='lite1',
        is_test=is_test,
        padding_type=padding_type,
        override_params=override_params,
        use_se=use_se)
    return model


def EfficientNetLite2(is_test=False,
                      padding_type='SAME',
                      override_params=None,
                      use_se=True):
    model = EfficientNetLite(
        name='lite2',
        is_test=is_test,
        padding_type=padding_type,
        override_params=override_params,
        use_se=use_se)
    return model


def EfficientNetLite3(is_test=False,
                      padding_type='SAME',
                      override_params=None,
                      use_se=True):
    model = EfficientNetLite(
        name='lite3',
        is_test=is_test,
        padding_type=padding_type,
        override_params=override_params,
        use_se=use_se)
    return model


def EfficientNetLite4(is_test=False,
                      padding_type='SAME',
                      override_params=None,
                      use_se=True):
    model = EfficientNetLite(
        name='lite4',
        is_test=is_test,
        padding_type=padding_type,
        override_params=override_params,
        use_se=use_se)
    return model