MobileNetV3_large_x1_0.yaml 2.9 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: ./output/
  device: gpu
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
C
cuicheng01 已提交
10
  start_eval_epoch: 10
C
cuicheng01 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  epochs: 20
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 224, 224]
  save_inference_dir: ./inference
  # training model under @to_static
  to_static: False
  use_dali: False

# mixed precision training
AMP:
  scale_loss: 128.0
  use_dynamic_loss_scaling: True
  # O1: mixed fp16
  level: O1

# model architecture
Arch:
  name: MobileNetV3_large_x1_0
  class_num: 2
  pretrained: True
  use_sync_bn: True
 
# loss function config for traing/eval process
Loss:
  Train:
    - CELoss:
        weight: 1.0
        epsilon: 0.1
  Eval:
    - CELoss:
        weight: 1.0


Optimizer:
  name: Momentum
  momentum: 0.9
  lr:
    name: Cosine
    learning_rate: 0.13
    warmup_epoch: 5
  regularizer:
    name: 'L2'
    coeff: 0.00002


# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: ImageNetDataset
      image_root: ./dataset/person/
      cls_label_path: ./dataset/person/train_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''

    sampler:
      name: DistributedBatchSampler
      batch_size: 512
      drop_last: False
      shuffle: True
    loader:
      num_workers: 8
      use_shared_memory: True

  Eval:
    dataset: 
      name: ImageNetDataset
      image_root: ./dataset/person/
      cls_label_path: ./dataset/person/val_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - ResizeImage:
            resize_short: 256
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 64
      drop_last: False
      shuffle: False
    loader:
      num_workers: 4
      use_shared_memory: True

Infer:
  infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  batch_size: 10
  transforms:
    - DecodeImage:
        to_rgb: True
        channel_first: False
    - ResizeImage:
        resize_short: 256
    - CropImage:
        size: 224
    - NormalizeImage:
        scale: 1.0/255.0
        mean: [0.485, 0.456, 0.406]
        std: [0.229, 0.224, 0.225]
        order: ''
    - ToCHWImage:
  PostProcess:
C
cuicheng01 已提交
133 134 135 136
    name: ThreshOutput
    threshold: 0.9
    label_0: nobody
    label_1: someone
C
cuicheng01 已提交
137 138 139 140 141 142 143 144 145

Metric:
  Train:
    - TopkAcc:
        topk: [1, 2]
  Eval:
    - TprAtFpr:
    - TopkAcc:
        topk: [1, 2]