vgg.py 6.2 KB
Newer Older
L
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import, division, print_function

import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
L
littletomatodonkey 已提交
21
from paddle.nn import MaxPool2D
L
littletomatodonkey 已提交
22 23

from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
L
littletomatodonkey 已提交
24
from ppcls.utils.save_load import load_dygraph_pretrain
L
littletomatodonkey 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

__all__ = ["VGG11", "VGG13", "VGG16", "VGG19"]

# VGG config
# key: VGG network depth
# value: conv num in different blocks
NET_CONFIG = {
    11: [1, 1, 2, 2, 2],
    13: [2, 2, 2, 2, 2],
    16: [2, 2, 3, 3, 3],
    19: [2, 2, 4, 4, 4]
}


def VGG11(**args):
    """
    VGG11
    Args:
        kwargs: 
            class_num: int=1000. Output dim of last fc layer.
            stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
    Returns:
        model: nn.Layer. Specific `VGG11` model depends on args.
    """
    model = VGGNet(config=NET_CONFIG[11], **args)
    return model


def VGG13(**args):
    """
    VGG13
    Args:
        kwargs: 
            class_num: int=1000. Output dim of last fc layer.
            stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
    Returns:
        model: nn.Layer. Specific `VGG11` model depends on args.
    """
    model = VGGNet(config=NET_CONFIG[13], **args)
    return model


def VGG16(**args):
    """
    VGG16
    Args:
        kwargs: 
            class_num: int=1000. Output dim of last fc layer.
            stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
    Returns:
        model: nn.Layer. Specific `VGG11` model depends on args.
    """
    model = VGGNet(config=NET_CONFIG[16], **args)
    return model


def VGG19(**args):
    """
    VGG19
    Args:
        kwargs: 
            class_num: int=1000. Output dim of last fc layer.
            stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
    Returns:
        model: nn.Layer. Specific `VGG11` model depends on args.
    """
    model = VGGNet(config=NET_CONFIG[19], **args)
    return model


class ConvBlock(TheseusLayer):
    def __init__(self, input_channels, output_channels, groups):
        super(ConvBlock, self).__init__()

        self.groups = groups
        self._conv_1 = Conv2D(
            in_channels=input_channels,
            out_channels=output_channels,
            kernel_size=3,
            stride=1,
            padding=1,
            bias_attr=False)
        if groups == 2 or groups == 3 or groups == 4:
            self._conv_2 = Conv2D(
                in_channels=output_channels,
                out_channels=output_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                bias_attr=False)
        if groups == 3 or groups == 4:
            self._conv_3 = Conv2D(
                in_channels=output_channels,
                out_channels=output_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                bias_attr=False)
        if groups == 4:
            self._conv_4 = Conv2D(
                in_channels=output_channels,
                out_channels=output_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                bias_attr=False)

        self._pool = MaxPool2D(kernel_size=2, stride=2, padding=0)
        self._relu = nn.ReLU()

    def forward(self, inputs):
        x = self._conv_1(inputs)
        x = self._relu(x)
        if self.groups == 2 or self.groups == 3 or self.groups == 4:
            x = self._conv_2(x)
            x = self._relu(x)
        if self.groups == 3 or self.groups == 4:
            x = self._conv_3(x)
            x = self._relu(x)
        if self.groups == 4:
            x = self._conv_4(x)
            x = self._relu(x)
        x = self._pool(x)
        return x


class VGGNet(TheseusLayer):
L
littletomatodonkey 已提交
152 153 154 155 156 157
    def __init__(self,
                 config,
                 stop_grad_layers=0,
                 class_num=1000,
                 pretrained=False,
                 **args):
L
littletomatodonkey 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        super().__init__()

        self.stop_grad_layers = stop_grad_layers

        self._conv_block_1 = ConvBlock(3, 64, config[0])
        self._conv_block_2 = ConvBlock(64, 128, config[1])
        self._conv_block_3 = ConvBlock(128, 256, config[2])
        self._conv_block_4 = ConvBlock(256, 512, config[3])
        self._conv_block_5 = ConvBlock(512, 512, config[4])

        self._relu = nn.ReLU()
        self._flatten = nn.Flatten(start_axis=1, stop_axis=-1)

        for idx, block in enumerate([
                self._conv_block_1, self._conv_block_2, self._conv_block_3,
                self._conv_block_4, self._conv_block_5
        ]):
            if self.stop_grad_layers >= idx + 1:
                for param in block.parameters():
                    param.trainable = False

        self._drop = Dropout(p=0.5, mode="downscale_in_infer")
        self._fc1 = Linear(7 * 7 * 512, 4096)
        self._fc2 = Linear(4096, 4096)
        self._out = Linear(4096, class_num)

L
littletomatodonkey 已提交
184 185 186
        if pretrained is not None:
            load_dygraph_pretrain(self, pretrained)

L
littletomatodonkey 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    def forward(self, inputs):
        x = self._conv_block_1(inputs)
        x = self._conv_block_2(x)
        x = self._conv_block_3(x)
        x = self._conv_block_4(x)
        x = self._conv_block_5(x)
        x = self._flatten(x)
        x = self._fc1(x)
        x = self._relu(x)
        x = self._drop(x)
        x = self._fc2(x)
        x = self._relu(x)
        x = self._drop(x)
        x = self._out(x)
        return x