inception_v4.py 15.2 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
WuHaobo 已提交
15
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
16 17 18
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
19 20
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
littletomatodonkey's avatar
littletomatodonkey 已提交
21
from paddle.nn.initializer import Uniform
22 23
import math

C
cuicheng01 已提交
24 25
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

littletomatodonkey's avatar
littletomatodonkey 已提交
26 27 28 29
MODEL_URLS = {
    "InceptionV4":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams"
}
C
cuicheng01 已提交
30 31

__all__ = list(MODEL_URLS.keys())
32

littletomatodonkey's avatar
littletomatodonkey 已提交
33 34

class ConvBNLayer(nn.Layer):
35 36 37 38 39 40 41 42 43 44 45
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 groups=1,
                 act='relu',
                 name=None):
        super(ConvBNLayer, self).__init__()

46
        self._conv = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
47 48 49
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
W
WuHaobo 已提交
50 51 52
            stride=stride,
            padding=padding,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
53
            weight_attr=ParamAttr(name=name + "_weights"),
54
            bias_attr=False)
W
WuHaobo 已提交
55
        bn_name = name + "_bn"
56 57
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
58 59 60 61 62 63
            act=act,
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(name=bn_name + "_offset"),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

64 65 66 67
    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y
W
WuHaobo 已提交
68 69


littletomatodonkey's avatar
littletomatodonkey 已提交
70
class InceptionStem(nn.Layer):
71
    def __init__(self):
W
wqz960 已提交
72
        super(InceptionStem, self).__init__()
73 74 75 76 77
        self._conv_1 = ConvBNLayer(
            3, 32, 3, stride=2, act="relu", name="conv1_3x3_s2")
        self._conv_2 = ConvBNLayer(32, 32, 3, act="relu", name="conv2_3x3_s1")
        self._conv_3 = ConvBNLayer(
            32, 64, 3, padding=1, act="relu", name="conv3_3x3_s1")
78
        self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
79 80 81 82 83 84 85 86 87 88
        self._conv2 = ConvBNLayer(
            64, 96, 3, stride=2, act="relu", name="inception_stem1_3x3_s2")
        self._conv1_1 = ConvBNLayer(
            160, 64, 1, act="relu", name="inception_stem2_3x3_reduce")
        self._conv1_2 = ConvBNLayer(
            64, 96, 3, act="relu", name="inception_stem2_3x3")
        self._conv2_1 = ConvBNLayer(
            160, 64, 1, act="relu", name="inception_stem2_1x7_reduce")
        self._conv2_2 = ConvBNLayer(
            64,
W
WuHaobo 已提交
89 90
            64, (7, 1),
            padding=(3, 0),
91
            act="relu",
W
WuHaobo 已提交
92
            name="inception_stem2_1x7")
93 94
        self._conv2_3 = ConvBNLayer(
            64,
W
WuHaobo 已提交
95 96
            64, (1, 7),
            padding=(0, 3),
97
            act="relu",
W
WuHaobo 已提交
98
            name="inception_stem2_7x1")
99 100 101 102 103 104 105 106 107 108 109 110
        self._conv2_4 = ConvBNLayer(
            64, 96, 3, act="relu", name="inception_stem2_3x3_2")
        self._conv3 = ConvBNLayer(
            192, 192, 3, stride=2, act="relu", name="inception_stem3_3x3_s2")

    def forward(self, inputs):
        conv = self._conv_1(inputs)
        conv = self._conv_2(conv)
        conv = self._conv_3(conv)

        pool1 = self._pool(conv)
        conv2 = self._conv2(conv)
littletomatodonkey's avatar
littletomatodonkey 已提交
111
        concat = paddle.concat([pool1, conv2], axis=1)
112 113 114 115 116 117 118 119

        conv1 = self._conv1_1(concat)
        conv1 = self._conv1_2(conv1)

        conv2 = self._conv2_1(concat)
        conv2 = self._conv2_2(conv2)
        conv2 = self._conv2_3(conv2)
        conv2 = self._conv2_4(conv2)
W
WuHaobo 已提交
120

littletomatodonkey's avatar
littletomatodonkey 已提交
121
        concat = paddle.concat([conv1, conv2], axis=1)
W
WuHaobo 已提交
122

123 124
        conv1 = self._conv3(concat)
        pool1 = self._pool(concat)
W
WuHaobo 已提交
125

littletomatodonkey's avatar
littletomatodonkey 已提交
126
        concat = paddle.concat([conv1, pool1], axis=1)
W
WuHaobo 已提交
127 128 129
        return concat


littletomatodonkey's avatar
littletomatodonkey 已提交
130
class InceptionA(nn.Layer):
131 132
    def __init__(self, name):
        super(InceptionA, self).__init__()
133
        self._pool = AvgPool2D(kernel_size=3, stride=1, padding=1)
134 135 136 137 138 139 140 141
        self._conv1 = ConvBNLayer(
            384, 96, 1, act="relu", name="inception_a" + name + "_1x1")
        self._conv2 = ConvBNLayer(
            384, 96, 1, act="relu", name="inception_a" + name + "_1x1_2")
        self._conv3_1 = ConvBNLayer(
            384, 64, 1, act="relu", name="inception_a" + name + "_3x3_reduce")
        self._conv3_2 = ConvBNLayer(
            64,
W
WuHaobo 已提交
142 143 144
            96,
            3,
            padding=1,
145
            act="relu",
W
WuHaobo 已提交
146
            name="inception_a" + name + "_3x3")
147 148
        self._conv4_1 = ConvBNLayer(
            384,
W
WuHaobo 已提交
149 150
            64,
            1,
151
            act="relu",
W
WuHaobo 已提交
152
            name="inception_a" + name + "_3x3_2_reduce")
153 154
        self._conv4_2 = ConvBNLayer(
            64,
W
WuHaobo 已提交
155 156 157
            96,
            3,
            padding=1,
158
            act="relu",
W
WuHaobo 已提交
159
            name="inception_a" + name + "_3x3_2")
160 161
        self._conv4_3 = ConvBNLayer(
            96,
W
WuHaobo 已提交
162 163 164
            96,
            3,
            padding=1,
165
            act="relu",
W
WuHaobo 已提交
166 167
            name="inception_a" + name + "_3x3_3")

168 169 170
    def forward(self, inputs):
        pool1 = self._pool(inputs)
        conv1 = self._conv1(pool1)
W
WuHaobo 已提交
171

172
        conv2 = self._conv2(inputs)
W
WuHaobo 已提交
173

174 175
        conv3 = self._conv3_1(inputs)
        conv3 = self._conv3_2(conv3)
W
WuHaobo 已提交
176

177 178 179
        conv4 = self._conv4_1(inputs)
        conv4 = self._conv4_2(conv4)
        conv4 = self._conv4_3(conv4)
W
WuHaobo 已提交
180

littletomatodonkey's avatar
littletomatodonkey 已提交
181
        concat = paddle.concat([conv1, conv2, conv3, conv4], axis=1)
182
        return concat
W
WuHaobo 已提交
183 184


littletomatodonkey's avatar
littletomatodonkey 已提交
185
class ReductionA(nn.Layer):
186 187
    def __init__(self):
        super(ReductionA, self).__init__()
188
        self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
        self._conv2 = ConvBNLayer(
            384, 384, 3, stride=2, act="relu", name="reduction_a_3x3")
        self._conv3_1 = ConvBNLayer(
            384, 192, 1, act="relu", name="reduction_a_3x3_2_reduce")
        self._conv3_2 = ConvBNLayer(
            192, 224, 3, padding=1, act="relu", name="reduction_a_3x3_2")
        self._conv3_3 = ConvBNLayer(
            224, 256, 3, stride=2, act="relu", name="reduction_a_3x3_3")

    def forward(self, inputs):
        pool1 = self._pool(inputs)
        conv2 = self._conv2(inputs)
        conv3 = self._conv3_1(inputs)
        conv3 = self._conv3_2(conv3)
        conv3 = self._conv3_3(conv3)
littletomatodonkey's avatar
littletomatodonkey 已提交
204
        concat = paddle.concat([pool1, conv2, conv3], axis=1)
W
WuHaobo 已提交
205 206 207
        return concat


littletomatodonkey's avatar
littletomatodonkey 已提交
208
class InceptionB(nn.Layer):
209 210
    def __init__(self, name=None):
        super(InceptionB, self).__init__()
211
        self._pool = AvgPool2D(kernel_size=3, stride=1, padding=1)
212 213 214 215 216 217
        self._conv1 = ConvBNLayer(
            1024, 128, 1, act="relu", name="inception_b" + name + "_1x1")
        self._conv2 = ConvBNLayer(
            1024, 384, 1, act="relu", name="inception_b" + name + "_1x1_2")
        self._conv3_1 = ConvBNLayer(
            1024,
W
WuHaobo 已提交
218 219
            192,
            1,
220
            act="relu",
W
WuHaobo 已提交
221
            name="inception_b" + name + "_1x7_reduce")
222 223
        self._conv3_2 = ConvBNLayer(
            192,
W
WuHaobo 已提交
224 225
            224, (1, 7),
            padding=(0, 3),
226
            act="relu",
W
WuHaobo 已提交
227
            name="inception_b" + name + "_1x7")
228 229
        self._conv3_3 = ConvBNLayer(
            224,
W
WuHaobo 已提交
230 231
            256, (7, 1),
            padding=(3, 0),
232
            act="relu",
W
WuHaobo 已提交
233
            name="inception_b" + name + "_7x1")
234 235
        self._conv4_1 = ConvBNLayer(
            1024,
W
WuHaobo 已提交
236 237
            192,
            1,
238
            act="relu",
W
WuHaobo 已提交
239
            name="inception_b" + name + "_7x1_2_reduce")
240 241
        self._conv4_2 = ConvBNLayer(
            192,
W
WuHaobo 已提交
242 243
            192, (1, 7),
            padding=(0, 3),
244
            act="relu",
W
WuHaobo 已提交
245
            name="inception_b" + name + "_1x7_2")
246 247
        self._conv4_3 = ConvBNLayer(
            192,
W
WuHaobo 已提交
248 249
            224, (7, 1),
            padding=(3, 0),
250
            act="relu",
W
WuHaobo 已提交
251
            name="inception_b" + name + "_7x1_2")
252 253
        self._conv4_4 = ConvBNLayer(
            224,
W
WuHaobo 已提交
254 255
            224, (1, 7),
            padding=(0, 3),
256
            act="relu",
W
WuHaobo 已提交
257
            name="inception_b" + name + "_1x7_3")
258 259
        self._conv4_5 = ConvBNLayer(
            224,
W
WuHaobo 已提交
260 261
            256, (7, 1),
            padding=(3, 0),
262
            act="relu",
W
WuHaobo 已提交
263 264
            name="inception_b" + name + "_7x1_3")

265 266 267
    def forward(self, inputs):
        pool1 = self._pool(inputs)
        conv1 = self._conv1(pool1)
W
WuHaobo 已提交
268

269 270 271 272 273
        conv2 = self._conv2(inputs)

        conv3 = self._conv3_1(inputs)
        conv3 = self._conv3_2(conv3)
        conv3 = self._conv3_3(conv3)
W
WuHaobo 已提交
274

275 276 277 278 279
        conv4 = self._conv4_1(inputs)
        conv4 = self._conv4_2(conv4)
        conv4 = self._conv4_3(conv4)
        conv4 = self._conv4_4(conv4)
        conv4 = self._conv4_5(conv4)
W
WuHaobo 已提交
280

littletomatodonkey's avatar
littletomatodonkey 已提交
281
        concat = paddle.concat([conv1, conv2, conv3, conv4], axis=1)
282
        return concat
W
WuHaobo 已提交
283

284

littletomatodonkey's avatar
littletomatodonkey 已提交
285
class ReductionB(nn.Layer):
286 287
    def __init__(self):
        super(ReductionB, self).__init__()
288
        self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
289 290 291 292 293 294 295 296
        self._conv2_1 = ConvBNLayer(
            1024, 192, 1, act="relu", name="reduction_b_3x3_reduce")
        self._conv2_2 = ConvBNLayer(
            192, 192, 3, stride=2, act="relu", name="reduction_b_3x3")
        self._conv3_1 = ConvBNLayer(
            1024, 256, 1, act="relu", name="reduction_b_1x7_reduce")
        self._conv3_2 = ConvBNLayer(
            256,
W
WuHaobo 已提交
297 298
            256, (1, 7),
            padding=(0, 3),
299
            act="relu",
W
WuHaobo 已提交
300
            name="reduction_b_1x7")
301 302
        self._conv3_3 = ConvBNLayer(
            256,
W
WuHaobo 已提交
303 304
            320, (7, 1),
            padding=(3, 0),
305
            act="relu",
W
WuHaobo 已提交
306
            name="reduction_b_7x1")
307 308 309 310 311 312 313 314 315 316 317 318 319
        self._conv3_4 = ConvBNLayer(
            320, 320, 3, stride=2, act="relu", name="reduction_b_3x3_2")

    def forward(self, inputs):
        pool1 = self._pool(inputs)

        conv2 = self._conv2_1(inputs)
        conv2 = self._conv2_2(conv2)

        conv3 = self._conv3_1(inputs)
        conv3 = self._conv3_2(conv3)
        conv3 = self._conv3_3(conv3)
        conv3 = self._conv3_4(conv3)
W
WuHaobo 已提交
320

littletomatodonkey's avatar
littletomatodonkey 已提交
321
        concat = paddle.concat([pool1, conv2, conv3], axis=1)
W
WuHaobo 已提交
322 323 324 325

        return concat


littletomatodonkey's avatar
littletomatodonkey 已提交
326
class InceptionC(nn.Layer):
327 328
    def __init__(self, name=None):
        super(InceptionC, self).__init__()
329
        self._pool = AvgPool2D(kernel_size=3, stride=1, padding=1)
330 331 332 333 334 335 336 337
        self._conv1 = ConvBNLayer(
            1536, 256, 1, act="relu", name="inception_c" + name + "_1x1")
        self._conv2 = ConvBNLayer(
            1536, 256, 1, act="relu", name="inception_c" + name + "_1x1_2")
        self._conv3_0 = ConvBNLayer(
            1536, 384, 1, act="relu", name="inception_c" + name + "_1x1_3")
        self._conv3_1 = ConvBNLayer(
            384,
W
WuHaobo 已提交
338 339
            256, (1, 3),
            padding=(0, 1),
340
            act="relu",
W
WuHaobo 已提交
341
            name="inception_c" + name + "_1x3")
342 343
        self._conv3_2 = ConvBNLayer(
            384,
W
WuHaobo 已提交
344 345
            256, (3, 1),
            padding=(1, 0),
346
            act="relu",
W
WuHaobo 已提交
347
            name="inception_c" + name + "_3x1")
348 349 350 351
        self._conv4_0 = ConvBNLayer(
            1536, 384, 1, act="relu", name="inception_c" + name + "_1x1_4")
        self._conv4_00 = ConvBNLayer(
            384,
W
WuHaobo 已提交
352 353
            448, (1, 3),
            padding=(0, 1),
354
            act="relu",
W
WuHaobo 已提交
355
            name="inception_c" + name + "_1x3_2")
356 357
        self._conv4_000 = ConvBNLayer(
            448,
W
WuHaobo 已提交
358 359
            512, (3, 1),
            padding=(1, 0),
360
            act="relu",
W
WuHaobo 已提交
361
            name="inception_c" + name + "_3x1_2")
362 363
        self._conv4_1 = ConvBNLayer(
            512,
W
WuHaobo 已提交
364 365
            256, (1, 3),
            padding=(0, 1),
366
            act="relu",
W
WuHaobo 已提交
367
            name="inception_c" + name + "_1x3_3")
368 369
        self._conv4_2 = ConvBNLayer(
            512,
W
WuHaobo 已提交
370 371
            256, (3, 1),
            padding=(1, 0),
372
            act="relu",
W
WuHaobo 已提交
373 374
            name="inception_c" + name + "_3x1_3")

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    def forward(self, inputs):
        pool1 = self._pool(inputs)
        conv1 = self._conv1(pool1)

        conv2 = self._conv2(inputs)

        conv3 = self._conv3_0(inputs)
        conv3_1 = self._conv3_1(conv3)
        conv3_2 = self._conv3_2(conv3)

        conv4 = self._conv4_0(inputs)
        conv4 = self._conv4_00(conv4)
        conv4 = self._conv4_000(conv4)
        conv4_1 = self._conv4_1(conv4)
        conv4_2 = self._conv4_2(conv4)

littletomatodonkey's avatar
littletomatodonkey 已提交
391
        concat = paddle.concat(
W
WuHaobo 已提交
392 393 394
            [conv1, conv2, conv3_1, conv3_2, conv4_1, conv4_2], axis=1)

        return concat
395 396


littletomatodonkey's avatar
littletomatodonkey 已提交
397
class InceptionV4DY(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
398
    def __init__(self, class_num=1000):
W
fix  
wqz960 已提交
399
        super(InceptionV4DY, self).__init__()
W
wqz960 已提交
400
        self._inception_stem = InceptionStem()
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

        self._inceptionA_1 = InceptionA(name="1")
        self._inceptionA_2 = InceptionA(name="2")
        self._inceptionA_3 = InceptionA(name="3")
        self._inceptionA_4 = InceptionA(name="4")
        self._reductionA = ReductionA()

        self._inceptionB_1 = InceptionB(name="1")
        self._inceptionB_2 = InceptionB(name="2")
        self._inceptionB_3 = InceptionB(name="3")
        self._inceptionB_4 = InceptionB(name="4")
        self._inceptionB_5 = InceptionB(name="5")
        self._inceptionB_6 = InceptionB(name="6")
        self._inceptionB_7 = InceptionB(name="7")
        self._reductionB = ReductionB()

        self._inceptionC_1 = InceptionC(name="1")
        self._inceptionC_2 = InceptionC(name="2")
        self._inceptionC_3 = InceptionC(name="3")

421
        self.avg_pool = AdaptiveAvgPool2D(1)
littletomatodonkey's avatar
littletomatodonkey 已提交
422
        self._drop = Dropout(p=0.2, mode="downscale_in_infer")
423 424 425
        stdv = 1.0 / math.sqrt(1536 * 1.0)
        self.out = Linear(
            1536,
littletomatodonkey's avatar
littletomatodonkey 已提交
426
            class_num,
littletomatodonkey's avatar
littletomatodonkey 已提交
427 428
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="final_fc_weights"),
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
            bias_attr=ParamAttr(name="final_fc_offset"))

    def forward(self, inputs):
        x = self._inception_stem(inputs)

        x = self._inceptionA_1(x)
        x = self._inceptionA_2(x)
        x = self._inceptionA_3(x)
        x = self._inceptionA_4(x)
        x = self._reductionA(x)

        x = self._inceptionB_1(x)
        x = self._inceptionB_2(x)
        x = self._inceptionB_3(x)
        x = self._inceptionB_4(x)
        x = self._inceptionB_5(x)
        x = self._inceptionB_6(x)
        x = self._inceptionB_7(x)
        x = self._reductionB(x)

        x = self._inceptionC_1(x)
        x = self._inceptionC_2(x)
        x = self._inceptionC_3(x)

        x = self.avg_pool(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
454
        x = paddle.squeeze(x, axis=[2, 3])
455 456 457 458 459
        x = self._drop(x)
        x = self.out(x)
        return x


C
cuicheng01 已提交
460 461 462 463 464 465 466 467 468 469 470 471
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )

littletomatodonkey's avatar
littletomatodonkey 已提交
472

C
cuicheng01 已提交
473 474
def InceptionV4(pretrained=False, use_ssld=False, **kwargs):
    model = InceptionV4DY(**kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
475 476
    _load_pretrained(
        pretrained, model, MODEL_URLS["InceptionV4"], use_ssld=use_ssld)
littletomatodonkey's avatar
littletomatodonkey 已提交
477
    return model