infer.py 4.5 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

littletomatodonkey's avatar
littletomatodonkey 已提交
15
import os
littletomatodonkey's avatar
littletomatodonkey 已提交
16 17 18 19 20
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))

W
WuHaobo 已提交
21 22 23 24 25
import argparse
import numpy as np
import paddle.fluid as fluid

from ppcls.modeling import architectures
littletomatodonkey's avatar
littletomatodonkey 已提交
26
import utils
W
WuHaobo 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    parser.add_argument("-i", "--image_file", type=str)
    parser.add_argument("-m", "--model", type=str)
    parser.add_argument("-p", "--pretrained_model", type=str)
    parser.add_argument("--use_gpu", type=str2bool, default=True)

    return parser.parse_args()


def create_predictor(args):
    def create_input():
        image = fluid.data(
            name='image', shape=[None, 3, 224, 224], dtype='float32')
        return image

    def create_model(args, model, input, class_dim=1000):
        if args.model == "GoogLeNet":
            out, _, _ = model.net(input=input, class_dim=class_dim)
        else:
            out = model.net(input=input, class_dim=class_dim)
            out = fluid.layers.softmax(out)
        return out

    model = architectures.__dict__[args.model]()

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    startup_prog = fluid.Program()
    infer_prog = fluid.Program()

    with fluid.program_guard(infer_prog, startup_prog):
        with fluid.unique_name.guard():
            image = create_input()
            out = create_model(args, model, image)

    infer_prog = infer_prog.clone(for_test=True)
    fluid.load(
        program=infer_prog, model_path=args.pretrained_model, executor=exe)

    return exe, infer_prog, [image.name], [out.name]


def create_operators():
    size = 224
    img_mean = [0.485, 0.456, 0.406]
    img_std = [0.229, 0.224, 0.225]
    img_scale = 1.0 / 255.0

    decode_op = utils.DecodeImage()
    resize_op = utils.ResizeImage(resize_short=256)
    crop_op = utils.CropImage(size=(size, size))
    normalize_op = utils.NormalizeImage(
        scale=img_scale, mean=img_mean, std=img_std)
    totensor_op = utils.ToTensor()

    return [decode_op, resize_op, crop_op, normalize_op, totensor_op]


def preprocess(fname, ops):
W
WuHaobo 已提交
93
    data = open(fname, 'rb').read()
W
WuHaobo 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106
    for op in ops:
        data = op(data)

    return data


def postprocess(outputs, topk=5):
    output = outputs[0]
    prob = np.array(output).flatten()
    index = prob.argsort(axis=0)[-topk:][::-1].astype('int32')
    return zip(index, prob[index])


littletomatodonkey's avatar
littletomatodonkey 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def get_image_list(img_file):
    imgs_lists = []
    if img_file is None or not os.path.exists(img_file):
        raise Exception("not found any img file in {}".format(img_file))

    img_end = ['jpg', 'png', 'jpeg', 'JPEG', 'JPG', 'bmp']
    if os.path.isfile(img_file) and img_file.split('.')[-1] in img_end:
        imgs_lists.append(img_file)
    elif os.path.isdir(img_file):
        for single_file in os.listdir(img_file):
            if single_file.split('.')[-1] in img_end:
                imgs_lists.append(os.path.join(img_file, single_file))
    if len(imgs_lists) == 0:
        raise Exception("not found any img file in {}".format(img_file))
    return imgs_lists


W
WuHaobo 已提交
124 125 126 127 128
def main():
    args = parse_args()
    operators = create_operators()
    exe, program, feed_names, fetch_names = create_predictor(args)

littletomatodonkey's avatar
littletomatodonkey 已提交
129 130 131 132 133 134 135 136 137 138 139 140
    image_list = get_image_list(args.image_file)
    for idx, filename in enumerate(image_list):
        data = preprocess(filename, operators)
        data = np.expand_dims(data, axis=0)
        outputs = exe.run(program,
                          feed={feed_names[0]: data},
                          fetch_list=fetch_names,
                          return_numpy=False)
        probs = postprocess(outputs)
        print("current image: {}".format(filename))
        for idx, prob in probs:
            print("\tclass id: {:d}, probability: {:.4f}".format(idx, prob))
W
WuHaobo 已提交
141 142 143 144


if __name__ == "__main__":
    main()