__init__.py 2.3 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
littletomatodonkey 已提交
15 16 17 18 19 20 21 22 23
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import paddle

from ppcls.utils import logger

W
WuHaobo 已提交
24 25
from . import optimizer

L
littletomatodonkey 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
__all__ = ['build_optimizer']


def build_lr_scheduler(lr_config, epochs, step_each_epoch):
    from . import learning_rate
    lr_config.update({'epochs': epochs, 'step_each_epoch': step_each_epoch})
    if 'name' in lr_config:
        lr_name = lr_config.pop('name')
        lr = getattr(learning_rate, lr_name)(**lr_config)()
    else:
        lr = lr_config['learning_rate']
    return lr


def build_optimizer(config, epochs, step_each_epoch, parameters):
    config = copy.deepcopy(config)
    # step1 build lr
    lr = build_lr_scheduler(config.pop('lr'), epochs, step_each_epoch)
    logger.info("build lr ({}) success..".format(lr))
    # step2 build regularization
    if 'regularizer' in config and config['regularizer'] is not None:
        reg_config = config.pop('regularizer')
        reg_name = reg_config.pop('name') + 'Decay'
        reg = getattr(paddle.regularizer, reg_name)(**reg_config)
    else:
        reg = None
    logger.info("build regularizer ({}) success..".format(reg))
    # step3 build optimizer
    optim_name = config.pop('name')
    if 'clip_norm' in config:
        clip_norm = config.pop('clip_norm')
        grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm)
    else:
        grad_clip = None
    optim = getattr(optimizer, optim_name)(learning_rate=lr,
                                           weight_decay=reg,
                                           grad_clip=grad_clip,
63
                                           **config)(parameters=parameters)
L
littletomatodonkey 已提交
64 65
    logger.info("build optimizer ({}) success..".format(optim))
    return optim, lr