emlloss.py 3.5 KB
Newer Older
B
Bin Lu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
import numpy as np
from .comfunc import rerange_index

class EmlLoss(paddle.nn.Layer):
    def __init__(self, batch_size = 40, samples_each_class = 2):
        super(EmlLoss, self).__init__()
        assert(batch_size % samples_each_class == 0)
        self.samples_each_class = samples_each_class
        self.batch_size   = batch_size
        self.rerange_index      = rerange_index(batch_size, samples_each_class)
        self.thresh = 20.0
        self.beta   = 100000
        
    def surrogate_function(self, beta, theta, bias):
        x = theta * paddle.exp(bias) 
        output = paddle.log(1 + beta * x) / math.log(1 + beta)
        return output

    def surrogate_function_approximate(self, beta, theta, bias):
        output = (paddle.log(theta) + bias + math.log(beta)) / math.log(1+beta)
        return output

    def surrogate_function_stable(self, beta, theta, target, thresh):
        max_gap = paddle.to_tensor(thresh, dtype='float32')
        max_gap.stop_gradient = True
        
        target_max = paddle.maximum(target, max_gap)
        target_min = paddle.minimum(target, max_gap)
        
        loss1 = self.surrogate_function(beta, theta, target_min)
        loss2 = self.surrogate_function_approximate(beta, theta, target_max)
        bias  = self.surrogate_function(beta, theta, max_gap)
        loss  = loss1 + loss2 - bias
        return loss

    def forward(self, input, target=None):
        features = input["features"]
        samples_each_class = self.samples_each_class
        batch_size         = self.batch_size
        rerange_index      = self.rerange_index
        
        #calc distance
        diffs = paddle.unsqueeze(features, axis=1) - paddle.unsqueeze(features, axis=0)
        similary_matrix =  paddle.sum(paddle.square(diffs), axis=-1)   
    
        tmp = paddle.reshape(similary_matrix, shape = [-1, 1]) 
        rerange_index = paddle.to_tensor(rerange_index)
        tmp = paddle.gather(tmp, index=rerange_index)   
        similary_matrix = paddle.reshape(tmp, shape=[-1, batch_size])  
        
        ignore, pos, neg = paddle.split(similary_matrix, num_or_sections= [1, 
            samples_each_class - 1, batch_size - samples_each_class], axis = 1)
        ignore.stop_gradient = True 

        pos_max = paddle.max(pos, axis=1, keepdim=True)
        pos = paddle.exp(pos - pos_max)
        pos_mean = paddle.mean(pos, axis=1, keepdim=True)

        neg_min = paddle.min(neg, axis=1, keepdim=True)
        neg = paddle.exp(neg_min - neg)
        neg_mean = paddle.mean(neg, axis=1, keepdim=True)
        
        bias = pos_max - neg_min
        theta = paddle.multiply(neg_mean, pos_mean)

        loss = self.surrogate_function_stable(self.beta, theta, bias, self.thresh)
        loss = paddle.mean(loss)
        return {"emlloss": loss}