preprocess_op.h 5.0 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <iostream>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "json/json.h"

namespace PPShiTu {

// Object for storing all preprocessed data
class ImageBlob {
 public:
  // image width and height
  std::vector<float> im_shape_;
  // Buffer for image data after preprocessing
  std::vector<float> im_data_;
  // in net data shape(after pad)
  std::vector<float> in_net_shape_;
  // Evaluation image width and height
  // std::vector<float>  eval_im_size_f_;
  // Scale factor for image size to origin image size
  std::vector<float> scale_factor_;
};

// Abstraction of preprocessing opration class
class PreprocessOp {
 public:
  virtual void Init(const Json::Value& item) = 0;
  virtual void Run(cv::Mat* im, ImageBlob* data) = 0;
};

class InitInfo : public PreprocessOp {
 public:
  virtual void Init(const Json::Value& item) {}
  virtual void Run(cv::Mat* im, ImageBlob* data);
};

class NormalizeImage : public PreprocessOp {
 public:
  virtual void Init(const Json::Value& item) {
    mean_.clear();
    scale_.clear();
    for (auto tmp : item["mean"]) {
      mean_.emplace_back(tmp.as<float>());
    }
    for (auto tmp : item["std"]) {
      scale_.emplace_back(tmp.as<float>());
    }
    is_scale_ = item["is_scale"].as<bool>();
  }

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  // CHW or HWC
  std::vector<float> mean_;
  std::vector<float> scale_;
  bool is_scale_;
};

class Permute : public PreprocessOp {
 public:
  virtual void Init(const Json::Value& item) {}
  virtual void Run(cv::Mat* im, ImageBlob* data);
};

class Resize : public PreprocessOp {
 public:
  virtual void Init(const Json::Value& item) {
    interp_ = item["interp"].as<int>();
    // max_size_ = item["target_size"].as<int>();
    keep_ratio_ = item["keep_ratio"].as<bool>();
    target_size_.clear();
    for (auto tmp : item["target_size"]) {
      target_size_.emplace_back(tmp.as<int>());
    }
  }

  // Compute best resize scale for x-dimension, y-dimension
  std::pair<float, float> GenerateScale(const cv::Mat& im);

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  int interp_;
  bool keep_ratio_;
  std::vector<int> target_size_;
  std::vector<int> in_net_shape_;
};

// Models with FPN need input shape % stride == 0
class PadStride : public PreprocessOp {
 public:
  virtual void Init(const Json::Value& item) {
    stride_ = item["stride"].as<int>();
  }

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  int stride_;
};

class TopDownEvalAffine : public PreprocessOp {
 public:
  virtual void Init(const Json::Value& item) {
    trainsize_.clear();
    for (auto tmp : item["trainsize"]) {
      trainsize_.emplace_back(tmp.as<int>());
    }
  }

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  int interp_ = 1;
  std::vector<int> trainsize_;
};

void CropImg(cv::Mat& img,
             cv::Mat& crop_img,
             std::vector<int>& area,
             std::vector<float>& center,
             std::vector<float>& scale,
             float expandratio = 0.15);

class Preprocessor {
 public:
  void Init(const Json::Value& config_node) {
    // initialize image info at first
    ops_["InitInfo"] = std::make_shared<InitInfo>();
    for (const auto& item : config_node) {
      auto op_name = item["type"].as<std::string>();

      ops_[op_name] = CreateOp(op_name);
      ops_[op_name]->Init(item);
    }
  }

  std::shared_ptr<PreprocessOp> CreateOp(const std::string& name) {
    if (name == "DetResize") {
      return std::make_shared<Resize>();
    } else if (name == "DetPermute") {
      return std::make_shared<Permute>();
    } else if (name == "DetNormalizeImage") {
      return std::make_shared<NormalizeImage>();
    } else if (name == "DetPadStride") {
      // use PadStride instead of PadBatch
      return std::make_shared<PadStride>();
    } else if (name == "TopDownEvalAffine") {
      return std::make_shared<TopDownEvalAffine>();
    }
    std::cerr << "can not find function of OP: " << name
              << " and return: nullptr" << std::endl;
    return nullptr;
  }

  void Run(cv::Mat* im, ImageBlob* data);

 public:
  static const std::vector<std::string> RUN_ORDER;

 private:
  std::unordered_map<std::string, std::shared_ptr<PreprocessOp>> ops_;
};

}  // namespace PPShiTu