MobileNetV3_small_x0_35.yaml 2.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: ./output/
  device: gpu
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
  epochs: 30
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 224, 224]
  save_inference_dir: ./inference
16
  start_eval_epoch: 20
17 18 19

# model architecture
Arch:
20
  name: MobileNetV3_small_x0_35
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
  class_num: 10
  pretrained: True
 
# loss function config for traing/eval process
Loss:
  Train:
    - CELoss:
        weight: 1.0
        epsilon: 0.1
  Eval:
    - CELoss:
        weight: 1.0


Optimizer:
  name: Momentum
  momentum: 0.9
  lr:
    name: Cosine
40
    learning_rate: 1.3
41 42 43
    warmup_epoch: 5
  regularizer:
    name: 'L2'
44
    coeff: 0.00001
45 46 47 48 49 50 51


# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: ImageNetDataset
52 53
      image_root: ./dataset/language_classification/
      cls_label_path: ./dataset/language_classification/train_list.txt
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''

    sampler:
      name: DistributedBatchSampler
      batch_size: 256
      drop_last: False
      shuffle: True
    loader:
74
      num_workers: 8
75 76 77 78 79
      use_shared_memory: True

  Eval:
    dataset: 
      name: ImageNetDataset
80 81
      image_root: ./dataset/language_classification/
      cls_label_path: ./dataset/language_classification/test_list.txt
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - ResizeImage:
            resize_short: 256
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 64
      drop_last: False
      shuffle: False
    loader:
101
      num_workers: 8
102 103 104
      use_shared_memory: True

Infer:
105
  infer_imgs: docs/images/inference_deployment/whl_demo.jpg
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  batch_size: 10
  transforms:
    - DecodeImage:
        to_rgb: True
        channel_first: False
    - ResizeImage:
        resize_short: 256
    - CropImage:
        size: 224
    - NormalizeImage:
        scale: 1.0/255.0
        mean: [0.485, 0.456, 0.406]
        std: [0.229, 0.224, 0.225]
        order: ''
    - ToCHWImage:
  PostProcess:
    name: Topk
    topk: 2
124
    class_id_map_file: ppcls/utils/PULC/language_classification_label_list.txt
125 126 127 128 129 130 131 132

Metric:
  Train:
    - TopkAcc:
        topk: [1, 2]
  Eval:
    - TopkAcc:
        topk: [1, 2]