dali.py 11.1 KB
Newer Older
W
Walter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import copy
import os

import numpy as np
import nvidia.dali.ops as ops
import nvidia.dali.types as types
import paddle
from nvidia.dali import fn
from nvidia.dali.pipeline import Pipeline
from nvidia.dali.plugin.base_iterator import LastBatchPolicy
from nvidia.dali.plugin.paddle import DALIGenericIterator


class HybridTrainPipe(Pipeline):
    def __init__(self,
                 file_root,
                 file_list,
                 batch_size,
                 resize_shorter,
                 crop,
                 min_area,
                 lower,
                 upper,
                 interp,
                 mean,
                 std,
                 device_id,
                 shard_id=0,
                 num_shards=1,
                 random_shuffle=True,
                 num_threads=4,
                 seed=42,
                 pad_output=False,
                 output_dtype=types.FLOAT,
                 dataset='Train'):
        super(HybridTrainPipe, self).__init__(
            batch_size, num_threads, device_id, seed=seed)
        self.input = ops.readers.File(
            file_root=file_root,
            file_list=file_list,
            shard_id=shard_id,
            num_shards=num_shards,
            random_shuffle=random_shuffle)
        # set internal nvJPEG buffers size to handle full-sized ImageNet images
        # without additional reallocations
        device_memory_padding = 211025920
        host_memory_padding = 140544512
        self.decode = ops.decoders.ImageRandomCrop(
            device='mixed',
            output_type=types.DALIImageType.RGB,
            device_memory_padding=device_memory_padding,
            host_memory_padding=host_memory_padding,
            random_aspect_ratio=[lower, upper],
            random_area=[min_area, 1.0],
            num_attempts=100)
        self.res = ops.Resize(
            device='gpu', resize_x=crop, resize_y=crop, interp_type=interp)
        self.cmnp = ops.CropMirrorNormalize(
            device="gpu",
            dtype=output_dtype,
            output_layout='CHW',
            crop=(crop, crop),
            mean=mean,
            std=std,
            pad_output=pad_output)
        self.coin = ops.random.CoinFlip(probability=0.5)
        self.to_int64 = ops.Cast(dtype=types.DALIDataType.INT64, device="gpu")

    def define_graph(self):
        rng = self.coin()
        jpegs, labels = self.input(name="Reader")
        images = self.decode(jpegs)
        images = self.res(images)
        output = self.cmnp(images.gpu(), mirror=rng)
        return [output, self.to_int64(labels.gpu())]

    def __len__(self):
        return self.epoch_size("Reader")


class HybridValPipe(Pipeline):
    def __init__(self,
                 file_root,
                 file_list,
                 batch_size,
                 resize_shorter,
                 crop,
                 interp,
                 mean,
                 std,
                 device_id,
                 shard_id=0,
                 num_shards=1,
                 random_shuffle=False,
                 num_threads=4,
                 seed=42,
                 pad_output=False,
                 output_dtype=types.FLOAT):
        super(HybridValPipe, self).__init__(
            batch_size, num_threads, device_id, seed=seed)
        self.input = ops.readers.File(
            file_root=file_root,
            file_list=file_list,
            shard_id=shard_id,
            num_shards=num_shards,
            random_shuffle=random_shuffle)
        self.decode = ops.decoders.Image(device="mixed")
        self.res = ops.Resize(
            device="gpu", resize_shorter=resize_shorter, interp_type=interp)
        self.cmnp = ops.CropMirrorNormalize(
            device="gpu",
            dtype=output_dtype,
            output_layout='CHW',
            crop=(crop, crop),
            mean=mean,
            std=std,
            pad_output=pad_output)
        self.to_int64 = ops.Cast(dtype=types.DALIDataType.INT64, device="gpu")

    def define_graph(self):
        jpegs, labels = self.input(name="Reader")
        images = self.decode(jpegs)
        images = self.res(images)
        output = self.cmnp(images)
        return [output, self.to_int64(labels.gpu())]

    def __len__(self):
        return self.epoch_size("Reader")


def dali_dataloader(config, mode, device, seed=None):
    assert "gpu" in device, "gpu training is required for DALI"
    device_id = int(device.split(':')[1])
    config_dataloader = config[mode]
    seed = 42 if seed is None else seed
    ops = [
        list(x.keys())[0]
        for x in config_dataloader["dataset"]["transform_ops"]
    ]
    support_ops_train = [
        "DecodeImage", "NormalizeImage", "RandFlipImage", "RandCropImage"
    ]
    support_ops_eval = [
        "DecodeImage", "ResizeImage", "CropImage", "NormalizeImage"
    ]
littletomatodonkey's avatar
littletomatodonkey 已提交
162

W
Walter 已提交
163 164 165 166 167 168 169 170 171 172 173
    if mode.lower() == 'train':
        assert set(ops) == set(
            support_ops_train
        ), "The supported trasform_ops for train_dataset in dali is : {}".format(
            ",".join(support_ops_train))
    else:
        assert set(ops) == set(
            support_ops_eval
        ), "The supported trasform_ops for eval_dataset in dali is : {}".format(
            ",".join(support_ops_eval))

littletomatodonkey's avatar
littletomatodonkey 已提交
174 175 176 177 178 179 180 181
    normalize_ops = [
        op for op in config_dataloader["dataset"]["transform_ops"]
        if "NormalizeImage" in op
    ][0]["NormalizeImage"]
    channel_num = normalize_ops.get("channel_num", 3)
    output_dtype = types.FLOAT16 if normalize_ops.get("output_fp16",
                                                      False) else types.FLOAT

W
Walter 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    env = os.environ
    #  assert float(env.get('FLAGS_fraction_of_gpu_memory_to_use', 0.92)) < 0.9, \
    #      "Please leave enough GPU memory for DALI workspace, e.g., by setting" \
    #      " `export FLAGS_fraction_of_gpu_memory_to_use=0.8`"

    gpu_num = paddle.distributed.get_world_size()

    batch_size = config_dataloader["sampler"]["batch_size"]

    file_root = config_dataloader["dataset"]["image_root"]
    file_list = config_dataloader["dataset"]["cls_label_path"]

    interp = 1  # settings.interpolation or 1  # default to linear
    interp_map = {
        0: types.DALIInterpType.INTERP_NN,  # cv2.INTER_NEAREST
        1: types.DALIInterpType.INTERP_LINEAR,  # cv2.INTER_LINEAR
        2: types.DALIInterpType.INTERP_CUBIC,  # cv2.INTER_CUBIC
        3: types.DALIInterpType.
        INTERP_LANCZOS3,  # XXX use LANCZOS3 for cv2.INTER_LANCZOS4
    }

    assert interp in interp_map, "interpolation method not supported by DALI"
    interp = interp_map[interp]
littletomatodonkey's avatar
littletomatodonkey 已提交
205
    pad_output = channel_num == 4
W
Walter 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219

    transforms = {
        k: v
        for d in config_dataloader["dataset"]["transform_ops"]
        for k, v in d.items()
    }

    scale = transforms["NormalizeImage"].get("scale", 1.0 / 255)
    scale = eval(scale) if isinstance(scale, str) else scale
    mean = transforms["NormalizeImage"].get("mean", [0.485, 0.456, 0.406])
    std = transforms["NormalizeImage"].get("std", [0.229, 0.224, 0.225])
    mean = [v / scale for v in mean]
    std = [v / scale for v in std]

littletomatodonkey's avatar
littletomatodonkey 已提交
220 221 222 223
    sampler_name = config_dataloader["sampler"].get("name",
                                                    "DistributedBatchSampler")
    assert sampler_name in ["DistributedBatchSampler", "BatchSampler"]

W
Walter 已提交
224 225 226 227 228 229 230 231 232
    if mode.lower() == "train":
        resize_shorter = 256
        crop = transforms["RandCropImage"]["size"]
        scale = transforms["RandCropImage"].get("scale", [0.08, 1.])
        ratio = transforms["RandCropImage"].get("ratio", [3.0 / 4, 4.0 / 3])
        min_area = scale[0]
        lower = ratio[0]
        upper = ratio[1]

D
dongshuilong 已提交
233
        if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env and 'FLAGS_selected_gpus' in env:
W
Walter 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
            shard_id = int(env['PADDLE_TRAINER_ID'])
            num_shards = int(env['PADDLE_TRAINERS_NUM'])
            device_id = int(env['FLAGS_selected_gpus'])
            pipe = HybridTrainPipe(
                file_root,
                file_list,
                batch_size,
                resize_shorter,
                crop,
                min_area,
                lower,
                upper,
                interp,
                mean,
                std,
                device_id,
                shard_id,
                num_shards,
                seed=seed + shard_id,
                pad_output=pad_output,
                output_dtype=output_dtype)
            pipe.build()
            pipelines = [pipe]
            #  sample_per_shard = len(pipe) // num_shards
        else:
            pipe = HybridTrainPipe(
                file_root,
                file_list,
                batch_size,
                resize_shorter,
                crop,
                min_area,
                lower,
                upper,
                interp,
                mean,
                std,
                device_id=device_id,
                shard_id=0,
                num_shards=1,
                seed=seed,
                pad_output=pad_output,
                output_dtype=output_dtype)
            pipe.build()
            pipelines = [pipe]
            #  sample_per_shard = len(pipelines[0])
        return DALIGenericIterator(
            pipelines, ['data', 'label'], reader_name='Reader')
    else:
        resize_shorter = transforms["ResizeImage"].get("resize_short", 256)
        crop = transforms["CropImage"]["size"]
D
dongshuilong 已提交
285
        if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env and 'FLAGS_selected_gpus' in env and sampler_name == "DistributedBatchSampler":
W
Walter 已提交
286 287 288
            shard_id = int(env['PADDLE_TRAINER_ID'])
            num_shards = int(env['PADDLE_TRAINERS_NUM'])
            device_id = int(env['FLAGS_selected_gpus'])
littletomatodonkey's avatar
littletomatodonkey 已提交
289

W
Walter 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
            pipe = HybridValPipe(
                file_root,
                file_list,
                batch_size,
                resize_shorter,
                crop,
                interp,
                mean,
                std,
                device_id=device_id,
                shard_id=shard_id,
                num_shards=num_shards,
                pad_output=pad_output,
                output_dtype=output_dtype)
        else:
            pipe = HybridValPipe(
                file_root,
                file_list,
                batch_size,
                resize_shorter,
                crop,
                interp,
                mean,
                std,
                device_id=device_id,
                pad_output=pad_output,
                output_dtype=output_dtype)
        pipe.build()
        return DALIGenericIterator(
            [pipe], ['data', 'label'], reader_name="Reader")