fmix.py 7.1 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import random

import numpy as np
from scipy.stats import beta


def fftfreqnd(h, w=None, z=None):
    """ Get bin values for discrete fourier transform of size (h, w, z)

    :param h: Required, first dimension size
    :param w: Optional, second dimension size
    :param z: Optional, third dimension size
    """
    fz = fx = 0
    fy = np.fft.fftfreq(h)

    if w is not None:
        fy = np.expand_dims(fy, -1)

        if w % 2 == 1:
            fx = np.fft.fftfreq(w)[:w // 2 + 2]
        else:
            fx = np.fft.fftfreq(w)[:w // 2 + 1]

    if z is not None:
        fy = np.expand_dims(fy, -1)
        if z % 2 == 1:
            fz = np.fft.fftfreq(z)[:, None]
        else:
            fz = np.fft.fftfreq(z)[:, None]

    return np.sqrt(fx * fx + fy * fy + fz * fz)


def get_spectrum(freqs, decay_power, ch, h, w=0, z=0):
    """ Samples a fourier image with given size and frequencies decayed by decay power

    :param freqs: Bin values for the discrete fourier transform
    :param decay_power: Decay power for frequency decay prop 1/f**d
    :param ch: Number of channels for the resulting mask
    :param h: Required, first dimension size
    :param w: Optional, second dimension size
    :param z: Optional, third dimension size
    """
    scale = np.ones(1) / (np.maximum(freqs, np.array([1. / max(w, h, z)]))
                          **decay_power)

    param_size = [ch] + list(freqs.shape) + [2]
    param = np.random.randn(*param_size)

    scale = np.expand_dims(scale, -1)[None, :]

    return scale * param


def make_low_freq_image(decay, shape, ch=1):
    """ Sample a low frequency image from fourier space

    :param decay_power: Decay power for frequency decay prop 1/f**d
    :param shape: Shape of desired mask, list up to 3 dims
    :param ch: Number of channels for desired mask
    """
    freqs = fftfreqnd(*shape)
    spectrum = get_spectrum(freqs, decay, ch,
                            *shape)  #.reshape((1, *shape[:-1], -1))
    spectrum = spectrum[:, 0] + 1j * spectrum[:, 1]
    mask = np.real(np.fft.irfftn(spectrum, shape))

    if len(shape) == 1:
        mask = mask[:1, :shape[0]]
    if len(shape) == 2:
        mask = mask[:1, :shape[0], :shape[1]]
    if len(shape) == 3:
        mask = mask[:1, :shape[0], :shape[1], :shape[2]]

    mask = mask
    mask = (mask - mask.min())
    mask = mask / mask.max()
    return mask


def sample_lam(alpha, reformulate=False):
    """ Sample a lambda from symmetric beta distribution with given alpha

    :param alpha: Alpha value for beta distribution
    :param reformulate: If True, uses the reformulation of [1].
    """
    if reformulate:
        lam = beta.rvs(alpha + 1, alpha)
    else:
        lam = beta.rvs(alpha, alpha)

    return lam


def binarise_mask(mask, lam, in_shape, max_soft=0.0):
    """ Binarises a given low frequency image such that it has mean lambda.

    :param mask: Low frequency image, usually the result of `make_low_freq_image`
    :param lam: Mean value of final mask
    :param in_shape: Shape of inputs
    :param max_soft: Softening value between 0 and 0.5 which smooths hard edges in the mask.
    :return:
    """
    idx = mask.reshape(-1).argsort()[::-1]
    mask = mask.reshape(-1)
    num = math.ceil(lam * mask.size) if random.random() > 0.5 else math.floor(
        lam * mask.size)

    eff_soft = max_soft
    if max_soft > lam or max_soft > (1 - lam):
        eff_soft = min(lam, 1 - lam)

    soft = int(mask.size * eff_soft)
    num_low = int(num - soft)
    num_high = int(num + soft)

    mask[idx[:num_high]] = 1
    mask[idx[num_low:]] = 0
    mask[idx[num_low:num_high]] = np.linspace(1, 0, (num_high - num_low))

    mask = mask.reshape((1, 1, in_shape[0], in_shape[1]))
    return mask


def sample_mask(alpha, decay_power, shape, max_soft=0.0, reformulate=False):
    """ Samples a mean lambda from beta distribution parametrised by alpha, creates a low frequency image and binarises
    it based on this lambda

    :param alpha: Alpha value for beta distribution from which to sample mean of mask
    :param decay_power: Decay power for frequency decay prop 1/f**d
    :param shape: Shape of desired mask, list up to 3 dims
    :param max_soft: Softening value between 0 and 0.5 which smooths hard edges in the mask.
    :param reformulate: If True, uses the reformulation of [1].
    """
    if isinstance(shape, int):
        shape = (shape, )

    # Choose lambda
    lam = sample_lam(alpha, reformulate)

    # Make mask, get mean / std
    mask = make_low_freq_image(decay_power, shape)
    mask = binarise_mask(mask, lam, shape, max_soft)

    return float(lam), mask


def sample_and_apply(x,
                     alpha,
                     decay_power,
                     shape,
                     max_soft=0.0,
                     reformulate=False):
    """

    :param x: Image batch on which to apply fmix of shape [b, c, shape*]
    :param alpha: Alpha value for beta distribution from which to sample mean of mask
    :param decay_power: Decay power for frequency decay prop 1/f**d
    :param shape: Shape of desired mask, list up to 3 dims
    :param max_soft: Softening value between 0 and 0.5 which smooths hard edges in the mask.
    :param reformulate: If True, uses the reformulation of [1].
    :return: mixed input, permutation indices, lambda value of mix,
    """
    lam, mask = sample_mask(alpha, decay_power, shape, max_soft, reformulate)
    index = np.random.permutation(x.shape[0])

    x1, x2 = x * mask, x[index] * (1 - mask)
    return x1 + x2, index, lam


class FMixBase:
    """ FMix augmentation

        Args:
            decay_power (float): Decay power for frequency decay prop 1/f**d
            alpha (float): Alpha value for beta distribution from which to sample mean of mask
            size ([int] | [int, int] | [int, int, int]): Shape of desired mask, list up to 3 dims
            max_soft (float): Softening value between 0 and 0.5 which smooths hard edges in the mask.
            reformulate (bool): If True, uses the reformulation of [1].
    """

    def __init__(self,
                 decay_power=3,
                 alpha=1,
                 size=(32, 32),
                 max_soft=0.0,
                 reformulate=False):
        super().__init__()
        self.decay_power = decay_power
        self.reformulate = reformulate
        self.size = size
        self.alpha = alpha
        self.max_soft = max_soft
        self.index = None
        self.lam = None

    def __call__(self, x):
        raise NotImplementedError

    def loss(self, *args, **kwargs):
        raise NotImplementedError