deephashloss.py 3.5 KB
Newer Older
B
Bin Lu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn

class DSHSDLoss(nn.Layer):
    """
    # DSHSD(IEEE ACCESS 2019)
    # paper [Deep Supervised Hashing Based on Stable Distribution](https://ieeexplore.ieee.org/document/8648432/)
    # [DSHSD] epoch:70,  bit:48,  dataset:cifar10-1,  MAP:0.809, Best MAP: 0.809
    # [DSHSD] epoch:250, bit:48,  dataset:nuswide_21, MAP:0.809, Best MAP: 0.815
    # [DSHSD] epoch:135, bit:48,  dataset:imagenet,   MAP:0.647, Best MAP: 0.647
    """
B
Bin Lu 已提交
26 27
    def __init__(self, alpha, multi_label=False):
        super(DSHSDLoss, self).__init__()
B
Bin Lu 已提交
28 29
        self.alpha = alpha
        self.multi_label = multi_label
B
Bin Lu 已提交
30 31

    def forward(self, input, label):
B
Bin Lu 已提交
32
        feature = input["features"]
B
Bin Lu 已提交
33 34 35 36 37 38
        logits = input["logits"]

        dist = paddle.sum(paddle.square(
            (paddle.unsqueeze(feature, 1) - paddle.unsqueeze(feature, 0))),
                          axis=2)

B
Bin Lu 已提交
39 40
        # label to ont-hot
        label = paddle.flatten(label)
B
Bin Lu 已提交
41
        n_class = logits.shape[1]
B
Bin Lu 已提交
42
        label = paddle.nn.functional.one_hot(label, n_class).astype("float32")
B
Bin Lu 已提交
43

B
Bin Lu 已提交
44 45
        s = (paddle.matmul(
            label, label, transpose_y=True) == 0).astype("float32")
B
Bin Lu 已提交
46 47
        margin = 2 * feature.shape[1]
        Ld = (1 - s) / 2 * dist + s / 2 * (margin - dist).clip(min=0)
B
Bin Lu 已提交
48
        Ld = Ld.mean()
B
Bin Lu 已提交
49

B
Bin Lu 已提交
50 51
        if self.multi_label:
            # multiple labels classification loss
B
Bin Lu 已提交
52 53
            Lc = (logits - label * logits + (
                (1 + (-logits).exp()).log())).sum(axis=1).mean()
B
Bin Lu 已提交
54 55
        else:
            # single labels classification loss
B
Bin Lu 已提交
56 57
            Lc = (-paddle.nn.functional.softmax(logits).log() * label).sum(
                axis=1).mean()
B
Bin Lu 已提交
58 59

        return {"dshsdloss": Lc + Ld * self.alpha}
B
Bin Lu 已提交
60

B
Bin Lu 已提交
61

B
Bin Lu 已提交
62
class LCDSHLoss(nn.Layer):
B
Bin Lu 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    """
    # paper [Locality-Constrained Deep Supervised Hashing for Image Retrieval](https://www.ijcai.org/Proceedings/2017/0499.pdf)
    # [LCDSH] epoch:145, bit:48, dataset:cifar10-1,  MAP:0.798, Best MAP: 0.798
    # [LCDSH] epoch:183, bit:48, dataset:nuswide_21, MAP:0.833, Best MAP: 0.834
    """
    def __init__(self, n_class, _lambda):
        super(LCDSHLoss, self).__init__()
        self._lambda = _lambda
        self.n_class = n_class

    def forward(self, input, label):
        feature = input["features"]

        # label to ont-hot
        label = paddle.flatten(label)
        label = paddle.nn.functional.one_hot(label,  self.n_class).astype("float32")
        
        s = 2 * (paddle.matmul(label, label, transpose_y=True) > 0).astype("float32") - 1
        inner_product = paddle.matmul(feature, feature, transpose_y=True) * 0.5

        inner_product = inner_product.clip(min=-50, max=50)
        L1 = paddle.log(1 + paddle.exp(-s * inner_product)).mean()

        b = feature.sign()
        inner_product_ = paddle.matmul(b, b, transpose_y=True) * 0.5
        sigmoid = paddle.nn.Sigmoid()
        L2 = (sigmoid(inner_product) - sigmoid(inner_product_)).pow(2).mean()

        return {"lcdshloss": L1 + self._lambda * L2}