preprocess_op.cc 6.3 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <string>
#include <thread>
#include <vector>

#include "include/preprocess_op.h"

namespace PPShiTu {

void InitInfo::Run(cv::Mat* im, ImageBlob* data) {
  data->im_shape_ = {static_cast<float>(im->rows),
                     static_cast<float>(im->cols)};
  data->scale_factor_ = {1., 1.};
  data->in_net_shape_ = {static_cast<float>(im->rows),
                         static_cast<float>(im->cols)};
}

void NormalizeImage::Run(cv::Mat* im, ImageBlob* data) {
  double e = 1.0;
  if (is_scale_) {
    e *= 1./255.0;
  }
  (*im).convertTo(*im, CV_32FC3, e);
  for (int h = 0; h < im->rows; h++) {
    for (int w = 0; w < im->cols; w++) {
      im->at<cv::Vec3f>(h, w)[0] =
          (im->at<cv::Vec3f>(h, w)[0] - mean_[0]) / scale_[0];
      im->at<cv::Vec3f>(h, w)[1] =
          (im->at<cv::Vec3f>(h, w)[1] - mean_[1]) / scale_[1];
      im->at<cv::Vec3f>(h, w)[2] =
          (im->at<cv::Vec3f>(h, w)[2] - mean_[2]) / scale_[2];
    }
  }
}

void Permute::Run(cv::Mat* im, ImageBlob* data) {
  (*im).convertTo(*im, CV_32FC3);
  int rh = im->rows;
  int rw = im->cols;
  int rc = im->channels();
  (data->im_data_).resize(rc * rh * rw);
  float* base = (data->im_data_).data();
  for (int i = 0; i < rc; ++i) {
    cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, base + i * rh * rw), i);
  }
}

void Resize::Run(cv::Mat* im, ImageBlob* data) {
  auto resize_scale = GenerateScale(*im);
  data->im_shape_ = {static_cast<float>(im->cols * resize_scale.first),
                     static_cast<float>(im->rows * resize_scale.second)};
  data->in_net_shape_ = {static_cast<float>(im->cols * resize_scale.first),
                         static_cast<float>(im->rows * resize_scale.second)};
  cv::resize(
      *im, *im, cv::Size(), resize_scale.first, resize_scale.second, interp_);
  data->im_shape_ = {
      static_cast<float>(im->rows), static_cast<float>(im->cols),
  };
  data->scale_factor_ = {
      resize_scale.second, resize_scale.first,
  };
}

std::pair<float, float> Resize::GenerateScale(const cv::Mat& im) {
  std::pair<float, float> resize_scale;
  int origin_w = im.cols;
  int origin_h = im.rows;

  if (keep_ratio_) {
    int im_size_max = std::max(origin_w, origin_h);
    int im_size_min = std::min(origin_w, origin_h);
    int target_size_max =
        *std::max_element(target_size_.begin(), target_size_.end());
    int target_size_min =
        *std::min_element(target_size_.begin(), target_size_.end());
    float scale_min =
        static_cast<float>(target_size_min) / static_cast<float>(im_size_min);
    float scale_max =
        static_cast<float>(target_size_max) / static_cast<float>(im_size_max);
    float scale_ratio = std::min(scale_min, scale_max);
    resize_scale = {scale_ratio, scale_ratio};
  } else {
    resize_scale.first =
        static_cast<float>(target_size_[1]) / static_cast<float>(origin_w);
    resize_scale.second =
        static_cast<float>(target_size_[0]) / static_cast<float>(origin_h);
  }
  return resize_scale;
}

void PadStride::Run(cv::Mat* im, ImageBlob* data) {
  if (stride_ <= 0) {
    return;
  }
  int rc = im->channels();
  int rh = im->rows;
  int rw = im->cols;
  int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_;
  int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_;
  cv::copyMakeBorder(
      *im, *im, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT, cv::Scalar(0));
  data->in_net_shape_ = {
      static_cast<float>(im->rows), static_cast<float>(im->cols),
  };
}

void TopDownEvalAffine::Run(cv::Mat* im, ImageBlob* data) {
  cv::resize(*im, *im, cv::Size(trainsize_[0], trainsize_[1]), 0, 0, interp_);
  // todo: Simd::ResizeBilinear();
  data->in_net_shape_ = {
      static_cast<float>(trainsize_[1]), static_cast<float>(trainsize_[0]),
  };
}

// Preprocessor op running order
const std::vector<std::string> Preprocessor::RUN_ORDER = {"InitInfo",
130 131 132 133 134
                                                          "DetTopDownEvalAffine",
                                                          "DetResize",
                                                          "DetNormalizeImage",
                                                          "DetPadStride",
                                                          "DetPermute"};
D
dongshuilong 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

void Preprocessor::Run(cv::Mat* im, ImageBlob* data) {
  for (const auto& name : RUN_ORDER) {
    if (ops_.find(name) != ops_.end()) {
      ops_[name]->Run(im, data);
    }
  }
}

void CropImg(cv::Mat& img,
             cv::Mat& crop_img,
             std::vector<int>& area,
             std::vector<float>& center,
             std::vector<float>& scale,
             float expandratio) {
  int crop_x1 = std::max(0, area[0]);
  int crop_y1 = std::max(0, area[1]);
  int crop_x2 = std::min(img.cols - 1, area[2]);
  int crop_y2 = std::min(img.rows - 1, area[3]);
  
  int center_x = (crop_x1 + crop_x2) / 2.;
  int center_y = (crop_y1 + crop_y2) / 2.;
  int half_h = (crop_y2 - crop_y1) / 2.;
  int half_w = (crop_x2 - crop_x1) / 2.;

  if (half_h * 3 > half_w * 4) {
    half_w = static_cast<int>(half_h * 0.75);
  } else {
    half_h = static_cast<int>(half_w * 4 / 3);
  }

  crop_x1 =
      std::max(0, center_x - static_cast<int>(half_w * (1 + expandratio)));
  crop_y1 =
      std::max(0, center_y - static_cast<int>(half_h * (1 + expandratio)));
  crop_x2 = std::min(img.cols - 1,
                     static_cast<int>(center_x + half_w * (1 + expandratio)));
  crop_y2 = std::min(img.rows - 1,
                     static_cast<int>(center_y + half_h * (1 + expandratio)));
  crop_img =
      img(cv::Range(crop_y1, crop_y2 + 1), cv::Range(crop_x1, crop_x2 + 1));

  center.clear();
  center.emplace_back((crop_x1 + crop_x2) / 2);
  center.emplace_back((crop_y1 + crop_y2) / 2);
  scale.clear();
  scale.emplace_back((crop_x2 - crop_x1));
  scale.emplace_back((crop_y2 - crop_y1));
}

}  // namespace PPShiTu