MobileNetV3_small_x1_0.yaml 2.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: "./output/"
  device: "gpu"
  class_num: 1000
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
  epochs: 360
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 224, 224]
  save_inference_dir: "./inference"

# model architecture
Arch:
  name: "MobileNetV3_small_x1_0"
 
# loss function config for traing/eval process
Loss:
  Train:
    - CELoss:
        weight: 1.0
C
cuicheng01 已提交
27
        epsilon: 0.1
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
  Eval:
    - CELoss:
        weight: 1.0


Optimizer:
  name: Momentum
  momentum: 0.9
  lr:
    name: Cosine
    learning_rate: 1.3
  regularizer:
    name: 'L2'
    coeff: 0.00002


# data loader for train and eval
DataLoader:
  Train:
    dataset:
        name: ImageNetDataset
        image_root: "./dataset/ILSVRC2012/"
        cls_label_path: "./dataset/ILSVRC2012/train_list.txt"
        transform_ops:
          - RandCropImage:
              size: 224
          - RandFlipImage:
              flip_code: 1
          - NormalizeImage:
              scale: 0.00392157
              mean: [0.485, 0.456, 0.406]
              std: [0.229, 0.224, 0.225]
              order: ''

    sampler:
        name: DistributedBatchSampler
        batch_size: 512
        drop_last: False
        shuffle: True
    loader:
        num_workers: 6
        use_shared_memory: False

  Eval:
    # TOTO: modify to the latest trainer
    dataset: 
        name: ImageNetDataset
        image_root: "./dataset/ILSVRC2012/"
        cls_label_path: "./dataset/ILSVRC2012/val_list.txt"
        transform_ops:
          - ResizeImage:
C
cuicheng01 已提交
79 80
              resize_short: 256
          - CropImage:
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
              size: 224
          - NormalizeImage:
              scale: 0.00392157
              mean: [0.485, 0.456, 0.406]
              std: [0.229, 0.224, 0.225]
              order: ''
    sampler:
        name: DistributedBatchSampler
        batch_size: 64
        drop_last: False
        shuffle: False
    loader:
        num_workers: 6
        use_shared_memory: False

Infer:
  infer_imgs: "docs/images/whl/demo.jpg"
  batch_size: 10
  transforms:
      - DecodeImage:
          to_rgb: True
          channel_first: False
      - ResizeImage:
          resize_short: 256
      - CropImage:
          size: 224
      - NormalizeImage:
          scale: 1.0/255.0
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: ''
      - ToCHWImage:
  PostProcess:
    name: Topk
    topk: 5
    class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"

Metric:
    Train:
C
cuicheng01 已提交
120 121
    - TopkAcc:
        topk: [1, 5]
122
    Eval:
C
cuicheng01 已提交
123 124
    - TopkAcc:
        topk: [1, 5]