dpn.py 11.8 KB
Newer Older
W
WuHaobo 已提交
1
import numpy as np
2 3 4
import argparse
import ast
import paddle
W
WuHaobo 已提交
5 6
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable

from paddle.fluid import framework

import math
import sys
import time

__all__ = [
    "DPN",
    "DPN68",
    "DPN92",
    "DPN98",
    "DPN107",
    "DPN131",
]


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 pad=0,
                 groups=1,
                 act="relu",
                 name=None):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=pad,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=name + '_bn_scale'),
            bias_attr=ParamAttr(name + '_bn_offset'),
            moving_mean_name=name + '_bn_mean',
            moving_variance_name=name + '_bn_variance')

    def forward(self, input):
        y = self._conv(input)
        y = self._batch_norm(y)
        return y


class BNACConvLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 pad=0,
                 groups=1,
                 act="relu",
                 name=None):
        super(BNACConvLayer, self).__init__()
        self.num_channels = num_channels
        self.name = name

        self._batch_norm = BatchNorm(
            num_channels,
            act=act,
            param_attr=ParamAttr(name=name + '_bn_scale'),
            bias_attr=ParamAttr(name + '_bn_offset'),
            moving_mean_name=name + '_bn_mean',
            moving_variance_name=name + '_bn_variance')

        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=pad,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)

    def forward(self, input):
        y = self._batch_norm(input)
        y = self._conv(y)
        return y


class DualPathFactory(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_1x1_a,
                 num_3x3_b,
                 num_1x1_c,
                 inc,
                 G,
                 _type='normal',
                 name=None):
        super(DualPathFactory, self).__init__()

        self.num_1x1_c = num_1x1_c
        self.inc = inc
        self.name = name

        kw = 3
        kh = 3
        pw = (kw - 1) // 2
        ph = (kh - 1) // 2

        # type
        if _type == 'proj':
            key_stride = 1
            self.has_proj = True
        elif _type == 'down':
            key_stride = 2
            self.has_proj = True
        elif _type == 'normal':
            key_stride = 1
            self.has_proj = False
        else:
            print("not implemented now!!!")
            sys.exit(1)
W
WuHaobo 已提交
136

137 138
        data_in_ch = sum(num_channels) if isinstance(num_channels,
                                                     list) else num_channels
W
WuHaobo 已提交
139

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        if self.has_proj:
            self.c1x1_w_func = BNACConvLayer(
                num_channels=data_in_ch,
                num_filters=num_1x1_c + 2 * inc,
                filter_size=(1, 1),
                pad=(0, 0),
                stride=(key_stride, key_stride),
                name=name + "_match")

        self.c1x1_a_func = BNACConvLayer(
            num_channels=data_in_ch,
            num_filters=num_1x1_a,
            filter_size=(1, 1),
            pad=(0, 0),
            name=name + "_conv1")

        self.c3x3_b_func = BNACConvLayer(
            num_channels=num_1x1_a,
            num_filters=num_3x3_b,
            filter_size=(kw, kh),
            pad=(pw, ph),
            stride=(key_stride, key_stride),
            groups=G,
            name=name + "_conv2")
W
WuHaobo 已提交
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        self.c1x1_c_func = BNACConvLayer(
            num_channels=num_3x3_b,
            num_filters=num_1x1_c + inc,
            filter_size=(1, 1),
            pad=(0, 0),
            name=name + "_conv3")

    def forward(self, input):
        # PROJ
        if isinstance(input, list):
            data_in = fluid.layers.concat([input[0], input[1]], axis=1)
        else:
            data_in = input

        if self.has_proj:
            c1x1_w = self.c1x1_w_func(data_in)
            data_o1, data_o2 = fluid.layers.split(
                c1x1_w, num_or_sections=[self.num_1x1_c, 2 * self.inc], dim=1)
        else:
            data_o1 = input[0]
            data_o2 = input[1]

        c1x1_a = self.c1x1_a_func(data_in)
        c3x3_b = self.c3x3_b_func(c1x1_a)
        c1x1_c = self.c1x1_c_func(c3x3_b)

        c1x1_c1, c1x1_c2 = fluid.layers.split(
            c1x1_c, num_or_sections=[self.num_1x1_c, self.inc], dim=1)

        # OUTPUTS
        summ = fluid.layers.elementwise_add(x=data_o1, y=c1x1_c1)
        dense = fluid.layers.concat([data_o2, c1x1_c2], axis=1)
        # tensor, channels
        return [summ, dense]
W
WuHaobo 已提交
199

200 201 202 203 204 205 206 207

class DPN(fluid.dygraph.Layer):
    def __init__(self, layers=60, class_dim=1000):
        super(DPN, self).__init__()

        self._class_dim = class_dim

        args = self.get_net_args(layers)
W
WuHaobo 已提交
208 209 210 211 212 213 214 215 216 217
        bws = args['bw']
        inc_sec = args['inc_sec']
        rs = args['r']
        k_r = args['k_r']
        k_sec = args['k_sec']
        G = args['G']
        init_num_filter = args['init_num_filter']
        init_filter_size = args['init_filter_size']
        init_padding = args['init_padding']

218
        self.k_sec = k_sec
W
WuHaobo 已提交
219

220 221
        self.conv1_x_1_func = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
222
            num_filters=init_num_filter,
223
            filter_size=3,
W
WuHaobo 已提交
224
            stride=2,
225
            pad=1,
W
WuHaobo 已提交
226
            act='relu',
227 228 229 230
            name="conv1")

        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
W
WuHaobo 已提交
231

232 233 234
        num_channel_dpn = init_num_filter

        self.dpn_func_list = []
W
WuHaobo 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        #conv2 - conv5
        match_list, num = [], 0
        for gc in range(4):
            bw = bws[gc]
            inc = inc_sec[gc]
            R = (k_r * bw) // rs[gc]
            if gc == 0:
                _type1 = 'proj'
                _type2 = 'normal'
                match = 1
            else:
                _type1 = 'down'
                _type2 = 'normal'
                match = match + k_sec[gc - 1]
            match_list.append(match)
250 251 252 253 254 255 256 257 258 259 260 261 262
            self.dpn_func_list.append(
                self.add_sublayer(
                    "dpn{}".format(match),
                    DualPathFactory(
                        num_channels=num_channel_dpn,
                        num_1x1_a=R,
                        num_3x3_b=R,
                        num_1x1_c=bw,
                        inc=inc,
                        G=G,
                        _type=_type1,
                        name="dpn" + str(match))))
            num_channel_dpn = [bw, 3 * inc]
W
WuHaobo 已提交
263 264 265 266 267

            for i_ly in range(2, k_sec[gc] + 1):
                num += 1
                if num in match_list:
                    num += 1
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
                self.dpn_func_list.append(
                    self.add_sublayer(
                        "dpn{}".format(num),
                        DualPathFactory(
                            num_channels=num_channel_dpn,
                            num_1x1_a=R,
                            num_3x3_b=R,
                            num_1x1_c=bw,
                            inc=inc,
                            G=G,
                            _type=_type2,
                            name="dpn" + str(num))))

                num_channel_dpn = [
                    num_channel_dpn[0], num_channel_dpn[1] + inc
                ]

        out_channel = sum(num_channel_dpn)

        self.conv5_x_x_bn = BatchNorm(
            num_channels=sum(num_channel_dpn),
            act="relu",
W
WuHaobo 已提交
290 291 292
            param_attr=ParamAttr(name='final_concat_bn_scale'),
            bias_attr=ParamAttr('final_concat_bn_offset'),
            moving_mean_name='final_concat_bn_mean',
293 294 295
            moving_variance_name='final_concat_bn_variance')

        self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
W
WuHaobo 已提交
296 297

        stdv = 0.01
298 299 300 301

        self.out = Linear(
            out_channel,
            class_dim,
W
WuHaobo 已提交
302 303
            param_attr=ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv),
304 305
                name="fc_weights"),
            bias_attr=ParamAttr(name="fc_offset"))
W
WuHaobo 已提交
306

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    def forward(self, input):
        conv1_x_1 = self.conv1_x_1_func(input)
        convX_x_x = self.pool2d_max(conv1_x_1)

        dpn_idx = 0
        for gc in range(4):
            convX_x_x = self.dpn_func_list[dpn_idx](convX_x_x)
            dpn_idx += 1
            for i_ly in range(2, self.k_sec[gc] + 1):
                convX_x_x = self.dpn_func_list[dpn_idx](convX_x_x)
                dpn_idx += 1

        conv5_x_x = fluid.layers.concat(convX_x_x, axis=1)
        conv5_x_x = self.conv5_x_x_bn(conv5_x_x)

        y = self.pool2d_avg(conv5_x_x)
        y = fluid.layers.reshape(y, shape=[0, -1])
        y = self.out(y)
        return y
W
WuHaobo 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

    def get_net_args(self, layers):
        if layers == 68:
            k_r = 128
            G = 32
            k_sec = [3, 4, 12, 3]
            inc_sec = [16, 32, 32, 64]
            bw = [64, 128, 256, 512]
            r = [64, 64, 64, 64]
            init_num_filter = 10
            init_filter_size = 3
            init_padding = 1
        elif layers == 92:
            k_r = 96
            G = 32
            k_sec = [3, 4, 20, 3]
            inc_sec = [16, 32, 24, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 64
            init_filter_size = 7
            init_padding = 3
        elif layers == 98:
            k_r = 160
            G = 40
            k_sec = [3, 6, 20, 3]
            inc_sec = [16, 32, 32, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 96
            init_filter_size = 7
            init_padding = 3
        elif layers == 107:
            k_r = 200
            G = 50
            k_sec = [4, 8, 20, 3]
            inc_sec = [20, 64, 64, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 128
            init_filter_size = 7
            init_padding = 3
        elif layers == 131:
            k_r = 160
            G = 40
            k_sec = [4, 8, 28, 3]
            inc_sec = [16, 32, 32, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 128
            init_filter_size = 7
            init_padding = 3
        else:
            raise NotImplementedError
        net_arg = {
            'k_r': k_r,
            'G': G,
            'k_sec': k_sec,
            'inc_sec': inc_sec,
            'bw': bw,
            'r': r
        }
        net_arg['init_num_filter'] = init_num_filter
        net_arg['init_filter_size'] = init_filter_size
        net_arg['init_padding'] = init_padding

        return net_arg


def DPN68():
    model = DPN(layers=68)
    return model


def DPN92():
    model = DPN(layers=92)
    return model


def DPN98():
    model = DPN(layers=98)
    return model


def DPN107():
    model = DPN(layers=107)
    return model


def DPN131():
    model = DPN(layers=131)
    return model