esnet.py 11.8 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import, division, print_function
import math
import paddle
from paddle import ParamAttr, reshape, transpose, concat, split
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import KaimingNormal
from paddle.regularizer import L2Decay

from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url


MODEL_URLS = {
    "ESNet_x0_25":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_25_pretrained.pdparams",
    "ESNet_x0_5":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_5_pretrained.pdparams",
    "ESNet_x0_75":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_75_pretrained.pdparams",
    "ESNet_x1_0":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x1_0_pretrained.pdparams",
}

__all__ = list(MODEL_URLS.keys())


def channel_shuffle(x, groups):
    batch_size, num_channels, height, width = x.shape[0:4]
    channels_per_group = num_channels // groups
    x = reshape(
        x=x, shape=[batch_size, groups, channels_per_group, height, width])
    x = transpose(x=x, perm=[0, 2, 1, 3, 4])
    x = reshape(x=x, shape=[batch_size, num_channels, height, width])
    return x


def make_divisible(v, divisor=8, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class ConvBNLayer(TheseusLayer):
    def __init__(
            self,
            in_channels,
            out_channels,
            kernel_size,
            stride=1,
            groups=1,
            if_act=True):
        super().__init__()
        self.conv = Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(initializer=KaimingNormal()),
            bias_attr=False)

        self.bn = BatchNorm(
            out_channels,
            param_attr=ParamAttr(regularizer=L2Decay(0.0)),
            bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
        self.if_act = if_act
        self.hardswish = nn.Hardswish()

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        if self.if_act:
            x = self.hardswish(x)
        return x

    
class SEModule(TheseusLayer):
    def __init__(self, channel, reduction=4):
        super().__init__()
        self.avg_pool = AdaptiveAvgPool2D(1)
        self.conv1 = Conv2D(
            in_channels=channel,
            out_channels=channel // reduction,
            kernel_size=1,
            stride=1,
            padding=0)
        self.relu = nn.ReLU()
        self.conv2 = Conv2D(
            in_channels=channel // reduction,
            out_channels=channel,
            kernel_size=1,
            stride=1,
            padding=0)
        self.hardsigmoid = nn.Hardsigmoid()

    def forward(self, x):
        identity = x
        x = self.avg_pool(x)
        x = self.conv1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.hardsigmoid(x)
        x = paddle.multiply(x=identity, y=x)
        return x 
    

class ESBlock1(TheseusLayer):
    def __init__(self,
                 in_channels,
                 out_channels):
        super().__init__()
        self.pw_1_1 = ConvBNLayer(
            in_channels=in_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1)
        self.dw_1 = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=3,
            stride=1,
            groups=out_channels // 2,
            if_act=False)
        self.se = SEModule(out_channels)

        self.pw_1_2 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1)

    def forward(self, x):
        x1, x2 = split(
            x,
            num_or_sections=[x.shape[1] // 2, x.shape[1] // 2],
            axis=1)
        x2 = self.pw_1_1(x2)
        x3 = self.dw_1(x2)
        x3 = concat([x2, x3], axis=1)
        x3 = self.se(x3)
        x3 = self.pw_1_2(x3)
        x = concat([x1, x3], axis=1)
        return channel_shuffle(x, 2)


class ESBlock2(TheseusLayer):
    def __init__(self,
                 in_channels,
                 out_channels):
        super().__init__()

        # branch1
        self.dw_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=3,
            stride=2,
            groups=in_channels,
            if_act=False)
        self.pw_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1)
        # branch2
        self.pw_2_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels // 2,
            kernel_size=1)
        self.dw_2 = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=3,
            stride=2,
            groups=out_channels // 2,
            if_act=False)
        self.se = SEModule(out_channels // 2)
        self.pw_2_2 = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=1)
        self.concat_dw = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
            groups=out_channels)
        self.concat_pw = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=1)

    def forward(self, x):
        x1 = self.dw_1(x)
        x1 = self.pw_1(x1)
        x2 = self.pw_2_1(x)
        x2 = self.dw_2(x2)
        x2 = self.se(x2)
        x2 = self.pw_2_2(x2)
        x = concat([x1, x2], axis=1)
        x = self.concat_dw(x)
        x = self.concat_pw(x)
        return x


class ESNet(TheseusLayer):
    def __init__(self, class_num=1000, scale=1.0, dropout_prob=0.2, class_expand=1280):
        super().__init__()
        self.scale = scale
        self.class_num = class_num
        self.class_expand = class_expand
        stage_repeats = [3, 7, 3]
        stage_out_channels = [-1, 24, make_divisible(116*scale), make_divisible(232*scale), make_divisible(464*scale), 1024]

        self.conv1 = ConvBNLayer(
            in_channels=3,
            out_channels=stage_out_channels[1],
            kernel_size=3,
            stride=2)
        self.max_pool = MaxPool2D(kernel_size=3, stride=2, padding=1)

        block_list = []
        for stage_id, num_repeat in enumerate(stage_repeats):
            for i in range(num_repeat): 
                if i == 0:
                    block = ESBlock2(
                            in_channels=stage_out_channels[stage_id + 1],
                            out_channels=stage_out_channels[stage_id + 2])
                else:
                    block = ESBlock1(
                            in_channels=stage_out_channels[stage_id + 2],
                            out_channels=stage_out_channels[stage_id + 2])
                block_list.append(block)
        self.blocks = nn.Sequential(*block_list)
        
        self.conv2 = ConvBNLayer(
            in_channels=stage_out_channels[-2],
            out_channels=stage_out_channels[-1],
            kernel_size=1)

        self.avg_pool = AdaptiveAvgPool2D(1)

        self.last_conv = Conv2D(
            in_channels=stage_out_channels[-1],
            out_channels=self.class_expand,
            kernel_size=1,
            stride=1,
            padding=0,
            bias_attr=False)
        self.hardswish = nn.Hardswish()
        self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
        self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
        self.fc = Linear(self.class_expand, self.class_num)

    def forward(self, x):
        x = self.conv1(x)
        x = self.max_pool(x)
        x = self.blocks(x)
        x = self.conv2(x)
        x = self.avg_pool(x)
        x = self.last_conv(x)
        x = self.hardswish(x)
        x = self.dropout(x)
        x = self.flatten(x)
        x = self.fc(x)
        return x  

    
def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )    
    

def ESNet_x0_25(pretrained=False, use_ssld=False, **kwargs):
    """
    ESNet_x0_25
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
        model: nn.Layer. Specific `ESNet_x0_25` model depends on args.
    """
    model = ESNet(scale=0.25, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ESNet_x0_25"], use_ssld)
    return model    
    
    
def ESNet_x0_5(pretrained=False, use_ssld=False, **kwargs):
    """
    ESNet_x0_5
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
        model: nn.Layer. Specific `ESNet_x0_5` model depends on args.
    """
    model = ESNet(scale=0.5, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ESNet_x0_5"], use_ssld)
    return model


def ESNet_x0_75(pretrained=False, use_ssld=False, **kwargs):
    """
    ESNet_x0_75
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
        model: nn.Layer. Specific `ESNet_x0_75` model depends on args.
    """
    model = ESNet(scale=0.75, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ESNet_x0_75"], use_ssld)
    return model


def ESNet_x1_0(pretrained=False, use_ssld=False, **kwargs):
    """
    ESNet_x1_0
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
        model: nn.Layer. Specific `ESNet_x1_0` model depends on args.
    """
    model = ESNet(scale=1.0, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["ESNet_x1_0"], use_ssld)
    return model