res2net_vd.py 9.6 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
littletomatodonkey's avatar
littletomatodonkey 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
littletomatodonkey's avatar
littletomatodonkey 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19 20
import numpy as np
import paddle
W
WuHaobo 已提交
21 22
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
23 24 25 26
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout

import math
W
WuHaobo 已提交
27 28

__all__ = [
29 30
    "Res2Net50_vd_48w_2s", "Res2Net50_vd_26w_4s", "Res2Net50_vd_14w_8s",
    "Res2Net50_vd_48w_2s", "Res2Net50_vd_26w_6s", "Res2Net50_vd_26w_8s",
W
WuHaobo 已提交
31 32 33 34
    "Res2Net101_vd_26w_4s", "Res2Net152_vd_26w_4s", "Res2Net200_vd_26w_4s"
]


35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(
            self,
            num_channels,
            num_filters,
            filter_size,
            stride=1,
            groups=1,
            is_vd_mode=False,
            act=None,
            name=None, ):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = Pool2D(
C
cuicheng01 已提交
50
            pool_size=2, pool_stride=2, pool_padding=0, pool_type='avg', ceil_mode=True)
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels1,
                 num_channels2,
                 num_filters,
                 stride,
                 scales,
                 shortcut=True,
                 if_first=False,
                 name=None):
        super(BottleneckBlock, self).__init__()
        self.stride = stride
        self.scales = scales
        self.conv0 = ConvBNLayer(
            num_channels=num_channels1,
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
        self.conv1_list = []
        for s in range(scales - 1):
            conv1 = self.add_sublayer(
                name + '_branch2b_' + str(s + 1),
                ConvBNLayer(
                    num_channels=num_filters // scales,
                    num_filters=num_filters // scales,
                    filter_size=3,
                    stride=stride,
                    act='relu',
                    name=name + '_branch2b_' + str(s + 1)))
            self.conv1_list.append(conv1)
        self.pool2d_avg = Pool2D(
            pool_size=3, pool_stride=stride, pool_padding=1, pool_type='avg')

        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_channels2,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels1,
                num_filters=num_channels2,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        xs = fluid.layers.split(y, self.scales, 1)
        ys = []
        for s, conv1 in enumerate(self.conv1_list):
            if s == 0 or self.stride == 2:
                ys.append(conv1(xs[s]))
            else:
                ys.append(conv1(xs[s] + ys[-1]))
        if self.stride == 1:
            ys.append(xs[-1])
        else:
            ys.append(self.pool2d_avg(xs[-1]))
        conv1 = fluid.layers.concat(ys, axis=1)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = fluid.layers.elementwise_add(x=short, y=conv2)
        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)


class Res2Net_vd(fluid.dygraph.Layer):
    def __init__(self, layers=50, scales=4, width=26, class_dim=1000):
        super(Res2Net_vd, self).__init__()

W
WuHaobo 已提交
162 163 164
        self.layers = layers
        self.scales = scales
        self.width = width
165
        basic_width = self.width * self.scales
W
WuHaobo 已提交
166 167
        supported_layers = [50, 101, 152, 200]
        assert layers in supported_layers, \
littletomatodonkey's avatar
littletomatodonkey 已提交
168 169
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
170

W
WuHaobo 已提交
171 172 173 174 175 176 177 178
        if layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
179 180 181 182 183 184
        num_channels = [64, 256, 512, 1024]
        num_channels2 = [256, 512, 1024, 2048]
        num_filters = [basic_width * t for t in [1, 2, 4, 8]]

        self.conv1_1 = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
185 186 187 188
            num_filters=32,
            filter_size=3,
            stride=2,
            act='relu',
189 190 191
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            num_channels=32,
W
WuHaobo 已提交
192 193 194 195
            num_filters=32,
            filter_size=3,
            stride=1,
            act='relu',
196 197 198
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            num_channels=32,
W
WuHaobo 已提交
199 200 201 202
            num_filters=64,
            filter_size=3,
            stride=1,
            act='relu',
203 204 205 206 207
            name="conv1_3")
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

        self.block_list = []
W
WuHaobo 已提交
208
        for block in range(len(depth)):
209
            shortcut = False
W
WuHaobo 已提交
210
            for i in range(depth[block]):
littletomatodonkey's avatar
littletomatodonkey 已提交
211
                if layers in [101, 152, 200] and block == 2:
W
WuHaobo 已提交
212 213 214 215 216 217
                    if i == 0:
                        conv_name = "res" + str(block + 2) + "a"
                    else:
                        conv_name = "res" + str(block + 2) + "b" + str(i)
                else:
                    conv_name = "res" + str(block + 2) + chr(97 + i)
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        num_channels1=num_channels[block]
                        if i == 0 else num_channels2[block],
                        num_channels2=num_channels2[block],
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        scales=scales,
                        shortcut=shortcut,
                        if_first=block == i == 0,
                        name=conv_name))
                self.block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
            param_attr=ParamAttr(
W
WuHaobo 已提交
244
                initializer=fluid.initializer.Uniform(-stdv, stdv),
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
                name="fc_weights"),
            bias_attr=ParamAttr(name="fc_offset"))

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y


def Res2Net50_vd_48w_2s(**args):
    model = Res2Net_vd(layers=50, scales=2, width=48, **args)
    return model
W
WuHaobo 已提交
264 265


266 267
def Res2Net50_vd_26w_4s(**args):
    model = Res2Net_vd(layers=50, scales=4, width=26, **args)
W
WuHaobo 已提交
268 269 270
    return model


271 272
def Res2Net50_vd_14w_8s(**args):
    model = Res2Net_vd(layers=50, scales=8, width=14, **args)
W
WuHaobo 已提交
273 274 275
    return model


276 277
def Res2Net50_vd_48w_2s(**args):
    model = Res2Net_vd(layers=50, scales=2, width=48, **args)
W
WuHaobo 已提交
278 279 280
    return model


281 282
def Res2Net50_vd_26w_6s(**args):
    model = Res2Net_vd(layers=50, scales=6, width=26, **args)
W
WuHaobo 已提交
283 284 285
    return model


286 287
def Res2Net50_vd_26w_8s(**args):
    model = Res2Net_vd(layers=50, scales=8, width=26, **args)
W
WuHaobo 已提交
288 289 290
    return model


291 292
def Res2Net101_vd_26w_4s(**args):
    model = Res2Net_vd(layers=101, scales=4, width=26, **args)
W
WuHaobo 已提交
293 294 295
    return model


296 297
def Res2Net152_vd_26w_4s(**args):
    model = Res2Net_vd(layers=152, scales=4, width=26, **args)
W
WuHaobo 已提交
298 299 300
    return model


301 302
def Res2Net200_vd_26w_4s(**args):
    model = Res2Net_vd(layers=200, scales=4, width=26, **args)
W
WuHaobo 已提交
303
    return model