inception_v4.py 13.9 KB
Newer Older
W
WuHaobo 已提交
1 2 3
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math

__all__ = ["InceptionV4"]

class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 groups=1,
                 act='relu',
                 name=None):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=num_channels,
W
WuHaobo 已提交
23 24 25 26 27 28 29
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
30
            bias_attr=False)
W
WuHaobo 已提交
31
        bn_name = name + "_bn"
32 33
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
34 35 36 37 38 39
            act=act,
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(name=bn_name + "_offset"),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

40 41 42 43
    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y
W
WuHaobo 已提交
44 45


W
wqz960 已提交
46
class InceptionStem(fluid.dygraph.Layer):
47
    def __init__(self):
W
wqz960 已提交
48
        super(InceptionStem, self).__init__()
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
        self._conv_1 = ConvBNLayer(
            3, 32, 3, stride=2, act="relu", name="conv1_3x3_s2")
        self._conv_2 = ConvBNLayer(32, 32, 3, act="relu", name="conv2_3x3_s1")
        self._conv_3 = ConvBNLayer(
            32, 64, 3, padding=1, act="relu", name="conv3_3x3_s1")
        self._pool = Pool2D(pool_size=3, pool_type="max", pool_stride=2)
        self._conv2 = ConvBNLayer(
            64, 96, 3, stride=2, act="relu", name="inception_stem1_3x3_s2")
        self._conv1_1 = ConvBNLayer(
            160, 64, 1, act="relu", name="inception_stem2_3x3_reduce")
        self._conv1_2 = ConvBNLayer(
            64, 96, 3, act="relu", name="inception_stem2_3x3")
        self._conv2_1 = ConvBNLayer(
            160, 64, 1, act="relu", name="inception_stem2_1x7_reduce")
        self._conv2_2 = ConvBNLayer(
            64,
W
WuHaobo 已提交
65 66
            64, (7, 1),
            padding=(3, 0),
67
            act="relu",
W
WuHaobo 已提交
68
            name="inception_stem2_1x7")
69 70
        self._conv2_3 = ConvBNLayer(
            64,
W
WuHaobo 已提交
71 72
            64, (1, 7),
            padding=(0, 3),
73
            act="relu",
W
WuHaobo 已提交
74
            name="inception_stem2_7x1")
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        self._conv2_4 = ConvBNLayer(
            64, 96, 3, act="relu", name="inception_stem2_3x3_2")
        self._conv3 = ConvBNLayer(
            192, 192, 3, stride=2, act="relu", name="inception_stem3_3x3_s2")

    def forward(self, inputs):
        conv = self._conv_1(inputs)
        conv = self._conv_2(conv)
        conv = self._conv_3(conv)

        pool1 = self._pool(conv)
        conv2 = self._conv2(conv)
        concat = fluid.layers.concat([pool1, conv2], axis=1)

        conv1 = self._conv1_1(concat)
        conv1 = self._conv1_2(conv1)

        conv2 = self._conv2_1(concat)
        conv2 = self._conv2_2(conv2)
        conv2 = self._conv2_3(conv2)
        conv2 = self._conv2_4(conv2)
W
WuHaobo 已提交
96 97 98

        concat = fluid.layers.concat([conv1, conv2], axis=1)

99 100
        conv1 = self._conv3(concat)
        pool1 = self._pool(concat)
W
WuHaobo 已提交
101 102 103 104 105

        concat = fluid.layers.concat([conv1, pool1], axis=1)
        return concat


106 107 108 109 110 111 112 113 114 115 116 117
class InceptionA(fluid.dygraph.Layer):
    def __init__(self, name):
        super(InceptionA, self).__init__()
        self._pool = Pool2D(pool_size=3, pool_type="avg", pool_padding=1)
        self._conv1 = ConvBNLayer(
            384, 96, 1, act="relu", name="inception_a" + name + "_1x1")
        self._conv2 = ConvBNLayer(
            384, 96, 1, act="relu", name="inception_a" + name + "_1x1_2")
        self._conv3_1 = ConvBNLayer(
            384, 64, 1, act="relu", name="inception_a" + name + "_3x3_reduce")
        self._conv3_2 = ConvBNLayer(
            64,
W
WuHaobo 已提交
118 119 120
            96,
            3,
            padding=1,
121
            act="relu",
W
WuHaobo 已提交
122
            name="inception_a" + name + "_3x3")
123 124
        self._conv4_1 = ConvBNLayer(
            384,
W
WuHaobo 已提交
125 126
            64,
            1,
127
            act="relu",
W
WuHaobo 已提交
128
            name="inception_a" + name + "_3x3_2_reduce")
129 130
        self._conv4_2 = ConvBNLayer(
            64,
W
WuHaobo 已提交
131 132 133
            96,
            3,
            padding=1,
134
            act="relu",
W
WuHaobo 已提交
135
            name="inception_a" + name + "_3x3_2")
136 137
        self._conv4_3 = ConvBNLayer(
            96,
W
WuHaobo 已提交
138 139 140
            96,
            3,
            padding=1,
141
            act="relu",
W
WuHaobo 已提交
142 143
            name="inception_a" + name + "_3x3_3")

144 145 146
    def forward(self, inputs):
        pool1 = self._pool(inputs)
        conv1 = self._conv1(pool1)
W
WuHaobo 已提交
147

148
        conv2 = self._conv2(inputs)
W
WuHaobo 已提交
149

150 151
        conv3 = self._conv3_1(inputs)
        conv3 = self._conv3_2(conv3)
W
WuHaobo 已提交
152

153 154 155
        conv4 = self._conv4_1(inputs)
        conv4 = self._conv4_2(conv4)
        conv4 = self._conv4_3(conv4)
W
WuHaobo 已提交
156

157 158
        concat = fluid.layers.concat([conv1, conv2, conv3, conv4], axis=1)
        return concat
W
WuHaobo 已提交
159 160


161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
class ReductionA(fluid.dygraph.Layer):
    def __init__(self):
        super(ReductionA, self).__init__()
        self._pool = Pool2D(pool_size=3, pool_type="max", pool_stride=2)
        self._conv2 = ConvBNLayer(
            384, 384, 3, stride=2, act="relu", name="reduction_a_3x3")
        self._conv3_1 = ConvBNLayer(
            384, 192, 1, act="relu", name="reduction_a_3x3_2_reduce")
        self._conv3_2 = ConvBNLayer(
            192, 224, 3, padding=1, act="relu", name="reduction_a_3x3_2")
        self._conv3_3 = ConvBNLayer(
            224, 256, 3, stride=2, act="relu", name="reduction_a_3x3_3")

    def forward(self, inputs):
        pool1 = self._pool(inputs)
        conv2 = self._conv2(inputs)
        conv3 = self._conv3_1(inputs)
        conv3 = self._conv3_2(conv3)
        conv3 = self._conv3_3(conv3)
        concat = fluid.layers.concat([pool1, conv2, conv3], axis=1)
W
WuHaobo 已提交
181 182 183
        return concat


184 185 186 187 188 189 190 191 192 193
class InceptionB(fluid.dygraph.Layer):
    def __init__(self, name=None):
        super(InceptionB, self).__init__()
        self._pool = Pool2D(pool_size=3, pool_type="avg", pool_padding=1)
        self._conv1 = ConvBNLayer(
            1024, 128, 1, act="relu", name="inception_b" + name + "_1x1")
        self._conv2 = ConvBNLayer(
            1024, 384, 1, act="relu", name="inception_b" + name + "_1x1_2")
        self._conv3_1 = ConvBNLayer(
            1024,
W
WuHaobo 已提交
194 195
            192,
            1,
196
            act="relu",
W
WuHaobo 已提交
197
            name="inception_b" + name + "_1x7_reduce")
198 199
        self._conv3_2 = ConvBNLayer(
            192,
W
WuHaobo 已提交
200 201
            224, (1, 7),
            padding=(0, 3),
202
            act="relu",
W
WuHaobo 已提交
203
            name="inception_b" + name + "_1x7")
204 205
        self._conv3_3 = ConvBNLayer(
            224,
W
WuHaobo 已提交
206 207
            256, (7, 1),
            padding=(3, 0),
208
            act="relu",
W
WuHaobo 已提交
209
            name="inception_b" + name + "_7x1")
210 211
        self._conv4_1 = ConvBNLayer(
            1024,
W
WuHaobo 已提交
212 213
            192,
            1,
214
            act="relu",
W
WuHaobo 已提交
215
            name="inception_b" + name + "_7x1_2_reduce")
216 217
        self._conv4_2 = ConvBNLayer(
            192,
W
WuHaobo 已提交
218 219
            192, (1, 7),
            padding=(0, 3),
220
            act="relu",
W
WuHaobo 已提交
221
            name="inception_b" + name + "_1x7_2")
222 223
        self._conv4_3 = ConvBNLayer(
            192,
W
WuHaobo 已提交
224 225
            224, (7, 1),
            padding=(3, 0),
226
            act="relu",
W
WuHaobo 已提交
227
            name="inception_b" + name + "_7x1_2")
228 229
        self._conv4_4 = ConvBNLayer(
            224,
W
WuHaobo 已提交
230 231
            224, (1, 7),
            padding=(0, 3),
232
            act="relu",
W
WuHaobo 已提交
233
            name="inception_b" + name + "_1x7_3")
234 235
        self._conv4_5 = ConvBNLayer(
            224,
W
WuHaobo 已提交
236 237
            256, (7, 1),
            padding=(3, 0),
238
            act="relu",
W
WuHaobo 已提交
239 240
            name="inception_b" + name + "_7x1_3")

241 242 243
    def forward(self, inputs):
        pool1 = self._pool(inputs)
        conv1 = self._conv1(pool1)
W
WuHaobo 已提交
244

245 246 247 248 249
        conv2 = self._conv2(inputs)

        conv3 = self._conv3_1(inputs)
        conv3 = self._conv3_2(conv3)
        conv3 = self._conv3_3(conv3)
W
WuHaobo 已提交
250

251 252 253 254 255
        conv4 = self._conv4_1(inputs)
        conv4 = self._conv4_2(conv4)
        conv4 = self._conv4_3(conv4)
        conv4 = self._conv4_4(conv4)
        conv4 = self._conv4_5(conv4)
W
WuHaobo 已提交
256

257 258
        concat = fluid.layers.concat([conv1, conv2, conv3, conv4], axis=1)
        return concat
W
WuHaobo 已提交
259

260 261 262 263 264 265 266 267 268 269 270 271 272

class ReductionB(fluid.dygraph.Layer):
    def __init__(self):
        super(ReductionB, self).__init__()
        self._pool = Pool2D(pool_size=3, pool_type="max", pool_stride=2)
        self._conv2_1 = ConvBNLayer(
            1024, 192, 1, act="relu", name="reduction_b_3x3_reduce")
        self._conv2_2 = ConvBNLayer(
            192, 192, 3, stride=2, act="relu", name="reduction_b_3x3")
        self._conv3_1 = ConvBNLayer(
            1024, 256, 1, act="relu", name="reduction_b_1x7_reduce")
        self._conv3_2 = ConvBNLayer(
            256,
W
WuHaobo 已提交
273 274
            256, (1, 7),
            padding=(0, 3),
275
            act="relu",
W
WuHaobo 已提交
276
            name="reduction_b_1x7")
277 278
        self._conv3_3 = ConvBNLayer(
            256,
W
WuHaobo 已提交
279 280
            320, (7, 1),
            padding=(3, 0),
281
            act="relu",
W
WuHaobo 已提交
282
            name="reduction_b_7x1")
283 284 285 286 287 288 289 290 291 292 293 294 295
        self._conv3_4 = ConvBNLayer(
            320, 320, 3, stride=2, act="relu", name="reduction_b_3x3_2")

    def forward(self, inputs):
        pool1 = self._pool(inputs)

        conv2 = self._conv2_1(inputs)
        conv2 = self._conv2_2(conv2)

        conv3 = self._conv3_1(inputs)
        conv3 = self._conv3_2(conv3)
        conv3 = self._conv3_3(conv3)
        conv3 = self._conv3_4(conv3)
W
WuHaobo 已提交
296 297 298 299 300 301

        concat = fluid.layers.concat([pool1, conv2, conv3], axis=1)

        return concat


302 303 304 305 306 307 308 309 310 311 312 313
class InceptionC(fluid.dygraph.Layer):
    def __init__(self, name=None):
        super(InceptionC, self).__init__()
        self._pool = Pool2D(pool_size=3, pool_type="avg", pool_padding=1)
        self._conv1 = ConvBNLayer(
            1536, 256, 1, act="relu", name="inception_c" + name + "_1x1")
        self._conv2 = ConvBNLayer(
            1536, 256, 1, act="relu", name="inception_c" + name + "_1x1_2")
        self._conv3_0 = ConvBNLayer(
            1536, 384, 1, act="relu", name="inception_c" + name + "_1x1_3")
        self._conv3_1 = ConvBNLayer(
            384,
W
WuHaobo 已提交
314 315
            256, (1, 3),
            padding=(0, 1),
316
            act="relu",
W
WuHaobo 已提交
317
            name="inception_c" + name + "_1x3")
318 319
        self._conv3_2 = ConvBNLayer(
            384,
W
WuHaobo 已提交
320 321
            256, (3, 1),
            padding=(1, 0),
322
            act="relu",
W
WuHaobo 已提交
323
            name="inception_c" + name + "_3x1")
324 325 326 327
        self._conv4_0 = ConvBNLayer(
            1536, 384, 1, act="relu", name="inception_c" + name + "_1x1_4")
        self._conv4_00 = ConvBNLayer(
            384,
W
WuHaobo 已提交
328 329
            448, (1, 3),
            padding=(0, 1),
330
            act="relu",
W
WuHaobo 已提交
331
            name="inception_c" + name + "_1x3_2")
332 333
        self._conv4_000 = ConvBNLayer(
            448,
W
WuHaobo 已提交
334 335
            512, (3, 1),
            padding=(1, 0),
336
            act="relu",
W
WuHaobo 已提交
337
            name="inception_c" + name + "_3x1_2")
338 339
        self._conv4_1 = ConvBNLayer(
            512,
W
WuHaobo 已提交
340 341
            256, (1, 3),
            padding=(0, 1),
342
            act="relu",
W
WuHaobo 已提交
343
            name="inception_c" + name + "_1x3_3")
344 345
        self._conv4_2 = ConvBNLayer(
            512,
W
WuHaobo 已提交
346 347
            256, (3, 1),
            padding=(1, 0),
348
            act="relu",
W
WuHaobo 已提交
349 350
            name="inception_c" + name + "_3x1_3")

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    def forward(self, inputs):
        pool1 = self._pool(inputs)
        conv1 = self._conv1(pool1)

        conv2 = self._conv2(inputs)

        conv3 = self._conv3_0(inputs)
        conv3_1 = self._conv3_1(conv3)
        conv3_2 = self._conv3_2(conv3)

        conv4 = self._conv4_0(inputs)
        conv4 = self._conv4_00(conv4)
        conv4 = self._conv4_000(conv4)
        conv4_1 = self._conv4_1(conv4)
        conv4_2 = self._conv4_2(conv4)

W
WuHaobo 已提交
367 368 369 370
        concat = fluid.layers.concat(
            [conv1, conv2, conv3_1, conv3_2, conv4_1, conv4_2], axis=1)

        return concat
371 372


W
fix  
wqz960 已提交
373
class InceptionV4DY(fluid.dygraph.Layer):
374
    def __init__(self, class_dim=1000):
W
fix  
wqz960 已提交
375
        super(InceptionV4DY, self).__init__()
W
wqz960 已提交
376
        self._inception_stem = InceptionStem()
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

        self._inceptionA_1 = InceptionA(name="1")
        self._inceptionA_2 = InceptionA(name="2")
        self._inceptionA_3 = InceptionA(name="3")
        self._inceptionA_4 = InceptionA(name="4")
        self._reductionA = ReductionA()

        self._inceptionB_1 = InceptionB(name="1")
        self._inceptionB_2 = InceptionB(name="2")
        self._inceptionB_3 = InceptionB(name="3")
        self._inceptionB_4 = InceptionB(name="4")
        self._inceptionB_5 = InceptionB(name="5")
        self._inceptionB_6 = InceptionB(name="6")
        self._inceptionB_7 = InceptionB(name="7")
        self._reductionB = ReductionB()

        self._inceptionC_1 = InceptionC(name="1")
        self._inceptionC_2 = InceptionC(name="2")
        self._inceptionC_3 = InceptionC(name="3")

        self.avg_pool = Pool2D(pool_type='avg', global_pooling=True)
        self._drop = Dropout(p=0.2)
        stdv = 1.0 / math.sqrt(1536 * 1.0)
        self.out = Linear(
            1536,
            class_dim,
            param_attr=ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv),
                name="final_fc_weights"),
            bias_attr=ParamAttr(name="final_fc_offset"))

    def forward(self, inputs):
        x = self._inception_stem(inputs)

        x = self._inceptionA_1(x)
        x = self._inceptionA_2(x)
        x = self._inceptionA_3(x)
        x = self._inceptionA_4(x)
        x = self._reductionA(x)

        x = self._inceptionB_1(x)
        x = self._inceptionB_2(x)
        x = self._inceptionB_3(x)
        x = self._inceptionB_4(x)
        x = self._inceptionB_5(x)
        x = self._inceptionB_6(x)
        x = self._inceptionB_7(x)
        x = self._reductionB(x)

        x = self._inceptionC_1(x)
        x = self._inceptionC_2(x)
        x = self._inceptionC_3(x)

        x = self.avg_pool(x)
        x = fluid.layers.squeeze(x, axes=[2, 3])
        x = self._drop(x)
        x = self.out(x)
        return x


W
wqz960 已提交
437 438 439
def InceptionV4(**args):
    model = InceptionV4DY(**args)
    return model