optimizer.py 10.1 KB
Newer Older
W
WuHaobo 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
W
WuHaobo 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WuHaobo 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
from paddle import optimizer as optim
Z
zhangbo9674 已提交
20
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21

G
gaotingquan 已提交
22 23
from ppcls.utils import logger

littletomatodonkey's avatar
littletomatodonkey 已提交
24

L
lubin 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
class SGD(object):
    """
    Args:
    learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
        It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
    parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
        This parameter is required in dygraph mode. \
        The default value is None in static mode, at this time all parameters will be updated.
    weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
        It canbe a float value as coeff of L2 regularization or \
        :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
        If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
        the regularization setting here in optimizer will be ignored for this parameter. \
        Otherwise, the regularization setting here in optimizer will take effect. \
        Default None, meaning there is no regularization.
    grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
        some derived class of ``GradientClipBase`` . There are three cliping strategies
        ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
        :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
    name (str, optional): The default value is None. Normally there is no need for user
            to set this property.
    """

    def __init__(self,
                 learning_rate=0.001,
                 weight_decay=None,
                 grad_clip=None,
L
lubin 已提交
52
                 name=None):
L
lubin 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
        self.name = name

    def __call__(self, model_list):
        # model_list is None in static graph
        parameters = sum([m.parameters() for m in model_list],
                         []) if model_list else None
        opt = optim.SGD(learning_rate=self.learning_rate,
                        parameters=parameters,
                        weight_decay=self.weight_decay,
                        grad_clip=self.grad_clip,
L
lubin 已提交
66
                        name=self.name)
L
lubin 已提交
67 68 69
        return opt


littletomatodonkey's avatar
littletomatodonkey 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82
class Momentum(object):
    """
    Simple Momentum optimizer with velocity state.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

    def __init__(self,
                 learning_rate,
                 momentum,
83
                 weight_decay=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
84
                 grad_clip=None,
Z
zhangbo9674 已提交
85
                 multi_precision=True):
G
gaotingquan 已提交
86
        super().__init__()
littletomatodonkey's avatar
littletomatodonkey 已提交
87 88
        self.learning_rate = learning_rate
        self.momentum = momentum
89 90
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
littletomatodonkey's avatar
littletomatodonkey 已提交
91
        self.multi_precision = multi_precision
littletomatodonkey's avatar
littletomatodonkey 已提交
92

G
gaotingquan 已提交
93
    def __call__(self, model_list):
G
gaotingquan 已提交
94 95 96
        # model_list is None in static graph
        parameters = sum([m.parameters() for m in model_list],
                         []) if model_list else None
97
        opt = optim.Momentum(
littletomatodonkey's avatar
littletomatodonkey 已提交
98 99
            learning_rate=self.learning_rate,
            momentum=self.momentum,
100 101
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
littletomatodonkey's avatar
littletomatodonkey 已提交
102
            multi_precision=self.multi_precision,
103
            parameters=parameters)
Z
zhangbo9674 已提交
104 105 106 107 108 109 110 111
        if hasattr(opt, '_use_multi_tensor'):
            opt = optim.Momentum(
                learning_rate=self.learning_rate,
                momentum=self.momentum,
                weight_decay=self.weight_decay,
                grad_clip=self.grad_clip,
                multi_precision=self.multi_precision,
                parameters=parameters,
Z
zhangbo9674 已提交
112
                use_multi_tensor=True)
113 114 115 116 117 118 119 120 121 122 123 124 125
        return opt


class Adam(object):
    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-08,
                 parameter_list=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
126 127
                 lazy_mode=False,
                 multi_precision=False):
128 129 130 131 132 133 134 135 136 137
        self.learning_rate = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.parameter_list = parameter_list
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
        self.name = name
        self.lazy_mode = lazy_mode
littletomatodonkey's avatar
littletomatodonkey 已提交
138
        self.multi_precision = multi_precision
139

G
gaotingquan 已提交
140
    def __call__(self, model_list):
G
gaotingquan 已提交
141 142 143
        # model_list is None in static graph
        parameters = sum([m.parameters() for m in model_list],
                         []) if model_list else None
144 145 146 147 148 149 150 151 152
        opt = optim.Adam(
            learning_rate=self.learning_rate,
            beta1=self.beta1,
            beta2=self.beta2,
            epsilon=self.epsilon,
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            name=self.name,
            lazy_mode=self.lazy_mode,
littletomatodonkey's avatar
littletomatodonkey 已提交
153
            multi_precision=self.multi_precision,
154
            parameters=parameters)
littletomatodonkey's avatar
littletomatodonkey 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        return opt


class RMSProp(object):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        rho (float) - rho value in equation.
        epsilon (float) - avoid division by zero, default is 1e-6.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

    def __init__(self,
                 learning_rate,
172
                 momentum=0.0,
littletomatodonkey's avatar
littletomatodonkey 已提交
173 174
                 rho=0.95,
                 epsilon=1e-6,
175
                 weight_decay=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
176 177
                 grad_clip=None,
                 multi_precision=False):
G
gaotingquan 已提交
178
        super().__init__()
littletomatodonkey's avatar
littletomatodonkey 已提交
179 180 181 182
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.rho = rho
        self.epsilon = epsilon
183 184
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
littletomatodonkey's avatar
littletomatodonkey 已提交
185

G
gaotingquan 已提交
186
    def __call__(self, model_list):
G
gaotingquan 已提交
187 188 189
        # model_list is None in static graph
        parameters = sum([m.parameters() for m in model_list],
                         []) if model_list else None
190
        opt = optim.RMSProp(
littletomatodonkey's avatar
littletomatodonkey 已提交
191 192 193 194
            learning_rate=self.learning_rate,
            momentum=self.momentum,
            rho=self.rho,
            epsilon=self.epsilon,
195 196 197
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            parameters=parameters)
littletomatodonkey's avatar
littletomatodonkey 已提交
198
        return opt
G
gaotingquan 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225


class AdamW(object):
    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-8,
                 weight_decay=None,
                 multi_precision=False,
                 grad_clip=None,
                 no_weight_decay_name=None,
                 one_dim_param_no_weight_decay=False,
                 **args):
        super().__init__()
        self.learning_rate = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.grad_clip = grad_clip
        self.weight_decay = weight_decay
        self.multi_precision = multi_precision
        self.no_weight_decay_name_list = no_weight_decay_name.split(
        ) if no_weight_decay_name else []
        self.one_dim_param_no_weight_decay = one_dim_param_no_weight_decay

    def __call__(self, model_list):
G
gaotingquan 已提交
226 227 228
        # model_list is None in static graph
        parameters = sum([m.parameters() for m in model_list],
                         []) if model_list else None
G
gaotingquan 已提交
229

G
gaotingquan 已提交
230
        # TODO(gaotingquan): model_list is None when in static graph, "no_weight_decay" not work.
G
gaotingquan 已提交
231 232 233 234 235 236 237
        if model_list is None:
            if self.one_dim_param_no_weight_decay or len(
                    self.no_weight_decay_name_list) != 0:
                msg = "\"AdamW\" does not support setting \"no_weight_decay\" in static graph. Please use dynamic graph."
                logger.error(Exception(msg))
                raise Exception(msg)

G
gaotingquan 已提交
238 239 240
        self.no_weight_decay_param_name_list = [
            p.name for model in model_list for n, p in model.named_parameters()
            if any(nd in n for nd in self.no_weight_decay_name_list)
G
gaotingquan 已提交
241
        ] if model_list else []
G
gaotingquan 已提交
242 243 244 245 246

        if self.one_dim_param_no_weight_decay:
            self.no_weight_decay_param_name_list += [
                p.name for model in model_list
                for n, p in model.named_parameters() if len(p.shape) == 1
G
gaotingquan 已提交
247
            ] if model_list else []
G
gaotingquan 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

        opt = optim.AdamW(
            learning_rate=self.learning_rate,
            beta1=self.beta1,
            beta2=self.beta2,
            epsilon=self.epsilon,
            parameters=parameters,
            weight_decay=self.weight_decay,
            multi_precision=self.multi_precision,
            grad_clip=self.grad_clip,
            apply_decay_param_fun=self._apply_decay_param_fun)
        return opt

    def _apply_decay_param_fun(self, name):
        return name not in self.no_weight_decay_param_name_list