ResNet_and_vd.md 11.4 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
# ResNet及其Vd系列

## 概述

ResNet系列模型是在2015年提出的,一举在ILSVRC2015比赛中取得冠军,top5错误率为3.57%。该网络创新性的提出了残差结构,通过堆叠多个残差结构从而构建了ResNet网络。实验表明使用残差块可以有效地提升收敛速度和精度。

斯坦福大学的Joyce Xu将ResNet称为「真正重新定义了我们看待神经网络的方式」的三大架构之一。由于ResNet卓越的性能,越来越多的来自学术界和工业界学者和工程师对其结构进行了改进,比较出名的有Wide-ResNet, ResNet-vc ,ResNet-vd, Res2Net等,其中ResNet-vc与ResNet-vd的参数量和计算量与ResNet几乎一致,所以在此我们将其与ResNet统一归为ResNet系列。

本次发布ResNet系列的模型包括ResNet50,ResNet50_vd,ResNet50_vd_ssld,ResNet200_vd等14个预训练模型。在训练层面上,ResNet的模型采用了训练ImageNet的标准训练流程,而其余改进版模型采用了更多的训练策略,如learning rate的下降方式采用了cosine decay,引入了label smoothing的标签正则方式,在数据预处理加入了mixup的操作,迭代总轮数从120个epoch增加到200个epoch。

其中,ResNet50_vd_v2与ResNet50_vd_ssld采用了知识蒸馏,保证模型结构不变的情况下,进一步提升了模型的精度,具体地,ResNet50_vd_v2的teacher模型是ResNet152_vd(top1准确率80.59%),数据选用的是ImageNet-1k的训练集,ResNet50_vd_ssld的teacher模型是ResNeXt101_32x16d_wsl(top1准确率84.2%),数据选用结合了ImageNet-1k的训练集和ImageNet-22k挖掘的400万数据。知识蒸馏的具体方法正在持续更新中。

该系列模型的FLOPS、参数量以及T4 GPU上的预测耗时如下图所示。

![](../../images/models/T4_benchmark/t4.fp32.bs4.ResNet.flops.png)

![](../../images/models/T4_benchmark/t4.fp32.bs4.ResNet.params.png)

![](../../images/models/T4_benchmark/t4.fp32.bs4.ResNet.png)

![](../../images/models/T4_benchmark/t4.fp16.bs4.ResNet.png)


通过上述曲线可以看出,层数越多,准确率越高,但是相应的参数量、计算量和延时都会增加。ResNet50_vd_ssld通过用更强的teacher和更多的数据,将其在ImageNet-1k上的验证集top-1精度进一步提高,达到了82.39%,刷新了ResNet50系列模型的精度。


## 精度、FLOPS和参数量

| Models           | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Parameters<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| ResNet18         | 0.710           | 0.899           | 0.696                    | 0.891                    | 3.660     | 11.690    |
| ResNet18_vd      | 0.723           | 0.908           |                          |                          | 4.140     | 11.710    |
| ResNet34         | 0.746           | 0.921           | 0.732                    | 0.913                    | 7.360     | 21.800    |
| ResNet34_vd      | 0.760           | 0.930           |                          |                          | 7.390     | 21.820    |
| ResNet34_vd_ssld      | 0.797           | 0.949           |                          |                          | 7.390     | 21.820    |
| ResNet50         | 0.765           | 0.930           | 0.760                    | 0.930                    | 8.190     | 25.560    |
| ResNet50_vc      | 0.784           | 0.940           |                          |                          | 8.670     | 25.580    |
| ResNet50_vd      | 0.791           | 0.944           | 0.792                    | 0.946                    | 8.670     | 25.580    |
| ResNet50_vd_v2   | 0.798           | 0.949           |                          |                          | 8.670     | 25.580    |
| ResNet101        | 0.776           | 0.936           | 0.776                    | 0.938                    | 15.520    | 44.550    |
| ResNet101_vd     | 0.802           | 0.950           |                          |                          | 16.100    | 44.570    |
| ResNet152        | 0.783           | 0.940           | 0.778                    | 0.938                    | 23.050    | 60.190    |
| ResNet152_vd     | 0.806           | 0.953           |                          |                          | 23.530    | 60.210    |
| ResNet200_vd     | 0.809           | 0.953           |                          |                          | 30.530    | 74.740    |
| ResNet50_vd_ssld | 0.824           | 0.961           |                          |                          | 8.670     | 25.580    |
| ResNet50_vd_ssld_v2 | 0.830           | 0.964           |                          |                          | 8.670     | 25.580    |
| Fix_ResNet50_vd_ssld_v2 | 0.840           | 0.970           |                          |                          | 17.696     | 25.580    |
| ResNet101_vd_ssld | 0.837           | 0.967           |                          |                          | 16.100    | 44.570     |

* 注:`ResNet50_vd_ssld_v2`是在`ResNet50_vd_ssld`训练策略的基础上加上AutoAugment训练得到,`Fix_ResNet50_vd_ssld_v2`是固定`ResNet50_vd_ssld_v2`除FC层外所有的网络参数,在320x320的图像输入分辨率下,基于ImageNet1k数据集微调得到。



## 基于V100 GPU的预测速度

| Models                 | Crop Size | Resize Short Size | FP32<br>Batch Size=1<br>(ms) |
|------------------|-----------|-------------------|--------------------------|
| ResNet18         | 224       | 256               | 1.499                    |
| ResNet18_vd      | 224       | 256               | 1.603                    |
| ResNet34         | 224       | 256               | 2.272                    |
| ResNet34_vd      | 224       | 256               | 2.343                    |
| ResNet34_vd_ssld      | 224       | 256               | 2.343                    |
| ResNet50         | 224       | 256               | 2.939                    |
| ResNet50_vc      | 224       | 256               | 3.041                    |
| ResNet50_vd      | 224       | 256               | 3.165                    |
| ResNet50_vd_v2   | 224       | 256               | 3.165                    |
| ResNet101        | 224       | 256               | 5.314                    |
| ResNet101_vd     | 224       | 256               | 5.252                    |
| ResNet152        | 224       | 256               | 7.205                    |
| ResNet152_vd     | 224       | 256               | 7.200                    |
| ResNet200_vd     | 224       | 256               | 8.885                    |
| ResNet50_vd_ssld | 224       | 256               | 3.165                    |
| ResNet101_vd_ssld  | 224       | 256             | 5.252                  |


## 基于T4 GPU的预测速度

| Models            | Crop Size | Resize Short Size | FP16<br>Batch Size=1<br>(ms) | FP16<br>Batch Size=4<br>(ms) | FP16<br>Batch Size=8<br>(ms) | FP32<br>Batch Size=1<br>(ms) | FP32<br>Batch Size=4<br>(ms) | FP32<br>Batch Size=8<br>(ms) |
|-------------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| ResNet18          | 224       | 256               | 1.3568                       | 2.5225                       | 3.61904                      | 1.45606                      | 3.56305                      | 6.28798                      |
| ResNet18_vd       | 224       | 256               | 1.39593                      | 2.69063                      | 3.88267                      | 1.54557                      | 3.85363                      | 6.88121                      |
| ResNet34          | 224       | 256               | 2.23092                      | 4.10205                      | 5.54904                      | 2.34957                      | 5.89821                      | 10.73451                     |
| ResNet34_vd       | 224       | 256               | 2.23992                      | 4.22246                      | 5.79534                      | 2.43427                      | 6.22257                      | 11.44906                     |
| ResNet34_vd_ssld       | 224       | 256               | 2.23992                      | 4.22246                      | 5.79534                      | 2.43427                      | 6.22257                      | 11.44906                     |
| ResNet50          | 224       | 256               | 2.63824                      | 4.63802                      | 7.02444                      | 3.47712                      | 7.84421                      | 13.90633                     |
| ResNet50_vc       | 224       | 256               | 2.67064                      | 4.72372                      | 7.17204                      | 3.52346                      | 8.10725                      | 14.45577                     |
| ResNet50_vd       | 224       | 256               | 2.65164                      | 4.84109                      | 7.46225                      | 3.53131                      | 8.09057                      | 14.45965                     |
| ResNet50_vd_v2    | 224       | 256               | 2.65164                      | 4.84109                      | 7.46225                      | 3.53131                      | 8.09057                      | 14.45965                     |
| ResNet101         | 224       | 256               | 5.04037                      | 7.73673                      | 10.8936                      | 6.07125                      | 13.40573                     | 24.3597                      |
| ResNet101_vd      | 224       | 256               | 5.05972                      | 7.83685                      | 11.34235                     | 6.11704                      | 13.76222                     | 25.11071                     |
| ResNet152         | 224       | 256               | 7.28665                      | 10.62001                     | 14.90317                     | 8.50198                      | 19.17073                     | 35.78384                     |
| ResNet152_vd      | 224       | 256               | 7.29127                      | 10.86137                     | 15.32444                     | 8.54376                      | 19.52157                     | 36.64445                     |
| ResNet200_vd      | 224       | 256               | 9.36026                      | 13.5474                      | 19.0725                      | 10.80619                     | 25.01731                     | 48.81399                     |
| ResNet50_vd_ssld  | 224       | 256               | 2.65164                      | 4.84109                      | 7.46225                      | 3.53131                      | 8.09057                      | 14.45965                     |
| ResNet50_vd_ssld_v2  | 224       | 256               | 2.65164                      | 4.84109                      | 7.46225                      | 3.53131                      | 8.09057                      | 14.45965                     |
| Fix_ResNet50_vd_ssld_v2  | 320       | 320               | 3.42818                      | 7.51534                      | 13.19370                      | 5.07696                      | 14.64218                      | 27.01453                     |
| ResNet101_vd_ssld | 224       | 256               | 5.05972                      | 7.83685                      | 11.34235                     | 6.11704                      | 13.76222                     | 25.11071                     |