Inception.md 6.5 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
# Inception系列

## 概述

GoogLeNet是2014年由Google设计的一种新的神经网络结构,其与VGG网络并列成为当年ImageNet挑战赛的双雄。GoogLeNet首次引入Inception结构,在网络中堆叠该结构使得网络层数达到了22层,这也是卷积网络首次超过20层的标志。由于在Inception结构中使用了1x1的卷积用于通道数降维,并且使用了Global-pooling代替传统的多fc层加工特征的方式,最终的GoogLeNet网络的FLOPS和参数量远小于VGG网络,成为当时神经网络设计的一道亮丽风景线。

InceptionV3是Google 对InceptionV2的一种改进。首先,InceptionV3 对 Inception模块进行了优化,同时设计和使用了更多种类的Inception模块,与此同时,InceptionV3中的部分Inception模块将较大的方形二维卷积拆成两个较小的非对称卷积,这样可以大幅度节省参数量。

Xception 是 Google 继 Inception 后提出的对 InceptionV3 的另一种改进。在Xception中,作者使用了深度可分离卷积代替了传统的卷积操作,该操作大大节省了网络的FLOPS和参数量,但是精度反而有所提升。在DeeplabV3+中,作者将Xception做了进一步的改进,同时增加了Xception的层数,设计出了Xception65和Xception71的网络。

InceptionV4是2016年由Google设计的新的神经网络,当时残差结构风靡一时,但是作者认为仅使用Inception 结构也可以达到很高的性能。InceptionV4使用了更多的Inception module,在ImageNet上的精度再创新高。


该系列模型的FLOPS、参数量以及T4 GPU上的预测耗时如下图所示。

![](../../images/models/T4_benchmark/t4.fp32.bs4.Inception.flops.png)

![](../../images/models/T4_benchmark/t4.fp32.bs4.Inception.params.png)

![](../../images/models/T4_benchmark/t4.fp32.bs4.Inception.png)

![](../../images/models/T4_benchmark/t4.fp16.bs4.Inception.png)

上图反映了Xception系列和InceptionV4的精度和其他指标的关系。其中Xception_deeplab与论文结构保持一致,Xception是PaddleClas的改进模型,在预测速度基本不变的情况下,精度提升约0.6%。关于该改进模型的详细介绍正在持续更新中,敬请期待。



## 精度、FLOPS和参数量

| Models             | Top1   | Top5   | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Parameters<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| GoogLeNet          | 0.707  | 0.897  | 0.698             |                   | 2.880        | 8.460             |
| Xception41         | 0.793  | 0.945  | 0.790             | 0.945             | 16.740       | 22.690            |
| Xception41<br>_deeplab | 0.796  | 0.944  |                   |                   | 18.160       | 26.730            |
| Xception65         | 0.810  | 0.955  |                   |                   | 25.950       | 35.480            |
| Xception65<br>_deeplab | 0.803  | 0.945  |                   |                   | 27.370       | 39.520            |
| Xception71         | 0.811  | 0.955  |                   |                   | 31.770       | 37.280            |
| InceptionV3        | 0.791  | 0.946  | 0.788             | 0.944             | 11.460       | 23.830            |
| InceptionV4        | 0.808  | 0.953  | 0.800             | 0.950             | 24.570       | 42.680            |



## 基于V100 GPU的预测速度

| Models                 | Crop Size | Resize Short Size | FP32<br>Batch Size=1<br>(ms) |
|------------------------|-----------|-------------------|--------------------------|
| GoogLeNet              | 224       | 256               | 1.807                    |
| Xception41             | 299       | 320               | 3.972                    |
| Xception41_<br>deeplab | 299       | 320               | 4.408                    |
| Xception65             | 299       | 320               | 6.174                    |
| Xception65_<br>deeplab | 299       | 320               | 6.464                    |
| Xception71             | 299       | 320               | 6.782                    |
| InceptionV4            | 299       | 320               | 11.141                   |



## 基于T4 GPU的预测速度

| Models             | Crop Size | Resize Short Size | FP16<br>Batch Size=1<br>(ms) | FP16<br>Batch Size=4<br>(ms) | FP16<br>Batch Size=8<br>(ms) | FP32<br>Batch Size=1<br>(ms) | FP32<br>Batch Size=4<br>(ms) | FP32<br>Batch Size=8<br>(ms) |
|--------------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| GoogLeNet          | 299       | 320               | 1.75451                      | 3.39931                      | 4.71909                      | 1.88038                      | 4.48882                      | 6.94035                      |
| Xception41         | 299       | 320               | 2.91192                      | 7.86878                      | 15.53685                     | 4.96939                      | 17.01361                     | 32.67831                     |
| Xception41_<br>deeplab | 299       | 320               | 2.85934                      | 7.2075                       | 14.01406                     | 5.33541                      | 17.55938                     | 33.76232                     |
| Xception65         | 299       | 320               | 4.30126                      | 11.58371                     | 23.22213                     | 7.26158                      | 25.88778                     | 53.45426                     |
| Xception65_<br>deeplab | 299       | 320               | 4.06803                      | 9.72694                      | 19.477                       | 7.60208                      | 26.03699                     | 54.74724                     |
| Xception71         | 299       | 320               | 4.80889                      | 13.5624                      | 27.18822                     | 8.72457                      | 31.55549                     | 69.31018                     |
| InceptionV3        | 299       | 320               | 3.67502                      | 6.36071                     | 9.82645                     | 6.64054                     | 13.53630                     | 22.17355                     |
| InceptionV4        | 299       | 320               | 9.50821                      | 13.72104                     | 20.27447                     | 12.99342                     | 25.23416                     | 43.56121                     |