reader.py 7.7 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import cv2

import numpy as np
import os
import signal

import paddle

import imaug
from imaug import transform
from imaug import MixupOperator
from ppcls.utils import logger

trainers_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
trainer_id = int(os.environ.get("PADDLE_TRAINER_ID", 0))


class ModeException(Exception):
    """
    ModeException
    """

    def __init__(self, message='', mode=''):
        message += "\nOnly the following 3 modes are supported: " \
                "train, valid, test. Given mode is {}".format(mode)
        super(ModeException, self).__init__(message)


class SampleNumException(Exception):
    """
    SampleNumException
    """

    def __init__(self, message='', sample_num=0, batch_size=1):
        message += "\nError: The number of the whole data ({}) " \
                "is smaller than the batch_size ({}), and drop_last " \
                "is turnning on, so nothing  will feed in program, " \
                "Terminated now. Please reset batch_size to a smaller " \
                "number or feed more data!".format(sample_num, batch_size)
        super(SampleNumException, self).__init__(message)


class ShuffleSeedException(Exception):
    """
    ShuffleSeedException
    """

    def __init__(self, message=''):
        message += "\nIf trainers_num > 1, the shuffle_seed must be set, " \
            "because the order of batch data generated by reader " \
            "must be the same in the respective processes."
        super(ShuffleSeedException, self).__init__(message)


def check_params(params):
    """
    check params to avoid unexpect errors

    Args:
        params(dict):
    """
    if 'shuffle_seed' not in params:
        params['shuffle_seed'] = None

    if trainers_num > 1 and params['shuffle_seed'] is None:
        raise ShuffleSeedException()

    data_dir = params.get('data_dir', '')
    assert os.path.isdir(data_dir), \
            "{} doesn't exist, please check datadir path".format(data_dir)

    if params['mode'] != 'test':
        file_list = params.get('file_list', '')
        assert os.path.isfile(file_list), \
                "{} doesn't exist, please check file list path".format(file_list)


def create_file_list(params):
    """
    if mode is test, create the file list

    Args:
        params(dict):
    """
    data_dir = params.get('data_dir', '')
    params['file_list'] = ".tmp.txt"
    imgtype_list = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff'}
    with open(params['file_list'], "w") as fout:
        tmp_file_list = os.listdir(data_dir)
        for file_name in tmp_file_list:
            file_path = os.path.join(data_dir, file_name)
            if imghdr.what(file_path) not in imgtype_list:
                continue
            fout.write(file_name + " 0" + "\n")


def shuffle_lines(full_lines, seed=None):
    """
    random shuffle lines

    Args:
        full_lines(list):
        seed(int): random seed
    """
    if seed is not None:
        np.random.RandomState(seed).shuffle(full_lines)
    else:
        np.random.shuffle(full_lines)

    return full_lines


def get_file_list(params):
    """
    read label list from file and shuffle the list

    Args:
        params(dict):
    """
    if params['mode'] == 'test':
        create_file_list(params)

    with open(params['file_list']) as flist:
        full_lines = [line.strip() for line in flist]

    full_lines = shuffle_lines(full_lines, params["shuffle_seed"])

    # use only partial data for each trainer in distributed training
143 144
    img_per_trainer = len(full_lines) // trainers_num
    full_lines = full_lines[trainer_id::trainers_num][:img_per_trainer]
W
WuHaobo 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

    return full_lines


def create_operators(params):
    """
    create operators based on the config

    Args:
        params(list): a dict list, used to create some operators
    """
    assert isinstance(params, list), ('operator config should be a list')
    ops = []
    for operator in params:
        assert isinstance(operator,
                          dict) and len(operator) == 1, "yaml format error"
        op_name = list(operator)[0]
        param = {} if operator[op_name] is None else operator[op_name]
        op = getattr(imaug, op_name)(**param)
        ops.append(op)

    return ops


def partial_reader(params, full_lines, part_id=0, part_num=1):
    """
    create a reader with partial data

    Args:
        params(dict):
        full_lines: label list
        part_id(int): part index of the current partial data
        part_num(int): part num of the dataset
    """
    assert part_id < part_num, ("part_num: {} should be larger " \
            "than part_id: {}".format(part_num, part_id))

    full_lines = full_lines[part_id::part_num]

    batch_size = int(params['batch_size']) // trainers_num
    if params['mode'] != "test" and len(full_lines) < batch_size:
        raise SampleNumException('', len(full_lines), batch_size)

    def reader():
        ops = create_operators(params['transforms'])
        for line in full_lines:
            img_path, label = line.split()
            img_path = os.path.join(params['data_dir'], img_path)
            img = open(img_path).read()
            img = transform(img, ops)
            yield (img, int(label))

    return reader


def mp_reader(params):
    """
    multiprocess reader

    Args:
        params(dict):
    """
    check_params(params)

    full_lines = get_file_list(params)

    part_num = 1 if 'num_workers' not in params else params['num_workers']

    readers = []
    for part_id in range(part_num):
        readers.append(partial_reader(params, full_lines, part_id, part_num))

    return paddle.reader.multiprocess_reader(readers, use_pipe=False)


def term_mp(sig_num, frame):
    """ kill all child processes 
    """
    pid = os.getpid()
    pgid = os.getpgid(os.getpid())
    logger.info("main proc {} exit, kill process group "
                "{}".format(pid, pgid))
    os.killpg(pgid, signal.SIGKILL)


class Reader:
    """
    Create a reader for trainning/validate/test

    Args:
        config(dict): arguments
        mode(str): train or val or test
        seed(int): random seed used to generate same sequence in each trainer

    Returns:
        the specific reader
    """

    def __init__(self, config, mode='train', seed=None):
        try:
            self.params = config[mode.upper()]
        except KeyError:
            raise ModeException(mode=mode)

        use_mix = config.get('use_mix')
        self.params['mode'] = mode
        if seed is not None:
            self.params['shuffle_seed'] = seed
        self.batch_ops = []
        if use_mix and mode == "train":
            self.batch_ops = create_operators(self.params['mix'])

    def __call__(self):
        reader = mp_reader(self.params)

        batch_size = int(self.params['batch_size']) // trainers_num

        def wrapper():
            batch = []
            for idx, sample in enumerate(reader()):
                img, label = sample
                batch.append((img, label))
                if (idx + 1) % batch_size == 0:
                    batch = transform(batch, self.batch_ops)
                    yield batch
                    batch = []

        return wrapper


signal.signal(signal.SIGINT, term_mp)
signal.signal(signal.SIGTERM, term_mp)