VAN_B2.yaml 3.7 KB
Newer Older
weixin_46524038's avatar
weixin_46524038 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: ./output/
  device: gpu
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
  epochs: 300
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 224, 224]
  save_inference_dir: ./inference
  # training model under @to_static
  to_static: False

G
gaotingquan 已提交
19 20 21 22 23 24 25 26 27 28 29 30

# mixed precision
AMP:
  use_amp: False
  use_fp16_test: False
  scale_loss: 128.0
  use_dynamic_loss_scaling: True
  use_promote: False
  # O1: mixed fp16, O2: pure fp16
  level: O1


weixin_46524038's avatar
weixin_46524038 已提交
31 32 33 34 35 36
# model architecture
Arch:
  name: VAN_B2
  class_num: 1000
  drop_path_rate: 0.1
  drop_rate: 0.0
weixin_46524038's avatar
weixin_46524038 已提交
37
 
weixin_46524038's avatar
weixin_46524038 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
# loss function config for traing/eval process
Loss:
  Train:
    - CELoss:
        weight: 1.0
        epsilon: 0.1
  Eval:
    - CELoss:
        weight: 1.0

Optimizer:
  name: AdamW
  beta1: 0.9
  beta2: 0.999
  epsilon: 1e-8
  weight_decay: 0.05
  one_dim_param_no_weight_decay: True
  lr:
    name: Cosine
    learning_rate: 1e-3
    eta_min: 1e-6
    warmup_epoch: 5
    warmup_start_lr: 1e-6

# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: ImageNetDataset
      image_root: ./dataset/ILSVRC2012/
      cls_label_path: ./dataset/ILSVRC2012/train_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
            interpolation: random
            backend: pil
        - RandFlipImage:
            flip_code: 1
        - TimmAutoAugment:
            config_str: rand-m9-mstd0.5-inc1
            interpolation: random
            img_size: 224
            mean: [0.5, 0.5, 0.5]
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.5, 0.5, 0.5]
            std: [0.5, 0.5, 0.5]
            order: ''
        - RandomErasing:
            EPSILON: 0.25
            sl: 0.02
            sh: 1.0/3.0
            r1: 0.3
            attempt: 10
            use_log_aspect: True
            mode: pixel
      batch_transform_ops:
        - OpSampler:
            MixupOperator:
              alpha: 0.8
              prob: 0.5
            CutmixOperator:
              alpha: 1.0
              prob: 0.5
    sampler:
      name: DistributedBatchSampler
      batch_size: 256
      drop_last: True
      shuffle: True
    loader:
      num_workers: 4
      use_shared_memory: True

  Eval:
    dataset: 
      name: ImageNetDataset
      image_root: ./dataset/ILSVRC2012/
      cls_label_path: ./dataset/ILSVRC2012/val_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - ResizeImage:
            resize_short: 248
            interpolation: bicubic
            backend: pil
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.5, 0.5, 0.5]
            std: [0.5, 0.5, 0.5]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 128
      drop_last: False
      shuffle: False
    loader:
      num_workers: 4
      use_shared_memory: True

Infer:
  infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  batch_size: 10
  transforms:
    - DecodeImage:
        to_rgb: True
        channel_first: False
    - ResizeImage:
        resize_short: 248
        interpolation: bicubic
        backend: pil
    - CropImage:
        size: 224
    - NormalizeImage:
        scale: 1.0/255.0
        mean: [0.5, 0.5, 0.5]
        std: [0.5, 0.5, 0.5]
        order: ''
    - ToCHWImage:
  PostProcess:
    name: Topk
    topk: 5
    class_id_map_file: ppcls/utils/imagenet1k_label_list.txt

Metric:
  Eval:
    - TopkAcc:
weixin_46524038's avatar
weixin_46524038 已提交
170
        topk: [1, 5]