TinyNet_B.yaml 3.5 KB
Newer Older
Y
Yang Nie 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: ./output/
  device: gpu
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
  epochs: 450
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 188, 188]
  save_inference_dir: ./inference

# model ema
EMA:
  decay: 0.9999

G
gaotingquan 已提交
21 22 23 24 25 26 27 28 29 30 31 32

# mixed precision
AMP:
  use_amp: False
  use_fp16_test: False
  scale_loss: 128.0
  use_dynamic_loss_scaling: True
  use_promote: False
  # O1: mixed fp16, O2: pure fp16
  level: O1


Y
Yang Nie 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
# model architecture
Arch:
  name: TinyNet_B
  class_num: 1000
  override_params:
    batch_norm_momentum: 0.9
    batch_norm_epsilon: 1e-5
    depth_trunc: round
    drop_connect_rate: 0.1

# loss function config for traing/eval process
Loss:
  Train:
    - CELoss:
        weight: 1.0
        epsilon: 0.1
  Eval:
    - CELoss:
        weight: 1.0

Optimizer:
  name: RMSProp
  momentum: 0.9
  rho: 0.9
  epsilon: 0.001
  one_dim_param_no_weight_decay: True
  lr:
    name: Step
    learning_rate: 0.048
    step_size: 2.4
    gamma: 0.97
    warmup_epoch: 3
    warmup_start_lr: 1e-6
  regularizer:
    name: 'L2'
    coeff: 1e-5

# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: ImageNetDataset
      image_root: ./dataset/ILSVRC2012/
      cls_label_path: ./dataset/ILSVRC2012/train_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
            backend: pil
        - RandCropImage:
            size: 188
            interpolation: bicubic
            backend: pil
            use_log_aspect: True
        - RandFlipImage:
            flip_code: 1
        - ColorJitter:
            brightness: 0.4
            contrast: 0.4
            saturation: 0.4
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 128
      drop_last: True
      shuffle: True
    loader:
      num_workers: 4
      use_shared_memory: True

  Eval:
    dataset:
      name: ImageNetDataset
      image_root: ./dataset/ILSVRC2012/
      cls_label_path: ./dataset/ILSVRC2012/val_list.txt
      transform_ops:
        - DecodeImage:
            to_np: False
            channel_first: False
            backend: pil
        - ResizeImage:
            resize_short: 214
            interpolation: bicubic
            backend: pil
        - CropImage:
            size: 188
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 128
      drop_last: False
      shuffle: False
    loader:
      num_workers: 4
      use_shared_memory: True

Infer:
  infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  batch_size: 10
  transforms:
    - DecodeImage:
        to_np: False
        channel_first: False
    - ResizeImage:
        resize_short: 214
        interpolation: bicubic
        backend: pil
    - CropImage:
        size: 188
    - NormalizeImage:
        scale: 1.0/255.0
        mean: [0.485, 0.456, 0.406]
        std: [0.229, 0.224, 0.225]
        order: ''
    - ToCHWImage:
  PostProcess:
    name: Topk
    topk: 5
    class_id_map_file: ppcls/utils/imagenet1k_label_list.txt

Metric:
  Train:
    - TopkAcc:
        topk: [1, 5]
  Eval:
    - TopkAcc:
        topk: [1, 5]