DeiT_tiny_patch16_224.yaml 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: ./output/
  device: gpu
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
10
  epochs: 300
11 12 13 14 15 16
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 224, 224]
  save_inference_dir: ./inference

G
gaotingquan 已提交
17 18 19 20 21 22 23 24 25 26 27 28

# mixed precision
AMP:
  use_amp: False
  use_fp16_test: False
  scale_loss: 128.0
  use_dynamic_loss_scaling: True
  use_promote: False
  # O1: mixed fp16, O2: pure fp16
  level: O1


29 30 31
# model architecture
Arch:
  name: DeiT_tiny_patch16_224
G
gaotingquan 已提交
32 33
  drop_path_rate : 0.1
  drop_rate : 0.0
littletomatodonkey's avatar
littletomatodonkey 已提交
34
  class_num: 1000
35 36 37 38
 
# loss function config for traing/eval process
Loss:
  Train:
G
gaotingquan 已提交
39
    - CELoss:
40
        weight: 1.0
41
        epsilon: 0.1
42 43 44 45 46
  Eval:
    - CELoss:
        weight: 1.0

Optimizer:
47 48 49 50 51 52 53
  name: AdamW
  beta1: 0.9
  beta2: 0.999
  epsilon: 1e-8
  weight_decay: 0.05
  no_weight_decay_name: norm cls_token pos_embed dist_token
  one_dim_param_no_weight_decay: True
54
  lr:
55
    # for 8 cards
56
    name: Cosine
57 58
    learning_rate: 2e-3
    eta_min: 2e-5
59
    warmup_epoch: 5
60
    warmup_start_lr: 2e-6
61 62 63 64 65 66 67 68 69 70 71 72 73 74

# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: ImageNetDataset
      image_root: ./dataset/ILSVRC2012/
      cls_label_path: ./dataset/ILSVRC2012/train_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
75 76
            interpolation: bicubic
            backend: pil
77 78
        - RandFlipImage:
            flip_code: 1
79 80 81 82
        - TimmAutoAugment:
            config_str: rand-m9-mstd0.5-inc1
            interpolation: bicubic
            img_size: 224
83 84 85 86 87
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        - RandomErasing:
            EPSILON: 0.25
            sl: 0.02
            sh: 1.0/3.0
            r1: 0.3
            attempt: 10
            use_log_aspect: True
            mode: pixel
      batch_transform_ops:
        - OpSampler:
            MixupOperator:
              alpha: 0.8
              prob: 0.5
            CutmixOperator:
              alpha: 1.0
              prob: 0.5
104 105
    sampler:
      name: DistributedBatchSampler
106
      batch_size: 256
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
      drop_last: False
      shuffle: True
    loader:
      num_workers: 4
      use_shared_memory: True

  Eval:
    dataset: 
      name: ImageNetDataset
      image_root: ./dataset/ILSVRC2012/
      cls_label_path: ./dataset/ILSVRC2012/val_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - ResizeImage:
            resize_short: 256
124 125
            interpolation: bicubic
            backend: pil
126 127 128 129 130 131 132 133 134
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
135
      batch_size: 256
136 137 138 139 140 141 142
      drop_last: False
      shuffle: False
    loader:
      num_workers: 4
      use_shared_memory: True

Infer:
T
Tingquan Gao 已提交
143
  infer_imgs: docs/images/inference_deployment/whl_demo.jpg
144 145 146 147 148 149 150
  batch_size: 10
  transforms:
    - DecodeImage:
        to_rgb: True
        channel_first: False
    - ResizeImage:
        resize_short: 256
151 152
        interpolation: bicubic
        backend: pil
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    - CropImage:
        size: 224
    - NormalizeImage:
        scale: 1.0/255.0
        mean: [0.485, 0.456, 0.406]
        std: [0.229, 0.224, 0.225]
        order: ''
    - ToCHWImage:
  PostProcess:
    name: Topk
    topk: 5
    class_id_map_file: ppcls/utils/imagenet1k_label_list.txt

Metric:
  Eval:
    - TopkAcc:
        topk: [1, 5]