PPLCNet_x1_0.yaml 3.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: ./output/
  device: gpu
  save_interval: 1
  eval_during_train: True
  start_eval_epoch: 18
  eval_interval: 1
  epochs: 20
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 80, 160]
  save_inference_dir: ./inference
  # training model under @to_static
  to_static: False
  use_dali: False

# model architecture
Arch:
  name: PPLCNet_x1_0
  class_num: 2
  pretrained: True
  use_ssld: True
  stride_list: [2, [2, 1], [2, 1], [2, 1], [2, 1]]
 
# loss function config for traing/eval process
Loss:
  Train:
    - CELoss:
        weight: 1.0
  Eval:
    - CELoss:
        weight: 1.0


Optimizer:
  name: Momentum
  momentum: 0.9
  lr:
    name: Cosine
    learning_rate: 0.8
    warmup_epoch: 5
  regularizer:
    name: 'L2'
    coeff: 0.00004


# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: ImageNetDataset
56 57
      image_root: ./dataset/textline_orientation/
      cls_label_path: ./dataset/textline_orientation/train_list.txt
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - ResizeImage:
            size: [160, 80]
        - TimmAutoAugment:
            prob: 1.0
            config_str: rand-m9-mstd0.5-inc1
            interpolation: bicubic
            img_size: [160, 80]
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
        - RandomErasing:
            EPSILON: 0.0
            sl: 0.02
            sh: 1.0/3.0
            r1: 0.3
            attempt: 10
            use_log_aspect: True
            mode: pixel

    sampler:
      name: DistributedBatchSampler
      batch_size: 256
      drop_last: False
      shuffle: True
    loader:
      num_workers: 16
      use_shared_memory: True

  Eval:
    dataset: 
      name: ImageNetDataset
95 96
      image_root: ./dataset/textline_orientation/
      cls_label_path: ./dataset/textline_orientation/val_list.txt
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - ResizeImage:
            size: [160, 80]
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 128
      drop_last: False
      shuffle: False
    loader:
      num_workers: 8
      use_shared_memory: True

Infer:
118
  infer_imgs: deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  batch_size: 10
  transforms:
    - DecodeImage:
        to_rgb: True
        channel_first: False
    - ResizeImage:
        size: [160, 80]
    - NormalizeImage:
        scale: 1.0/255.0
        mean: [0.485, 0.456, 0.406]
        std: [0.229, 0.224, 0.225]
        order: ''
    - ToCHWImage:
  PostProcess:
    name: Topk
134
    topk: 1
135
    class_id_map_file: ppcls/utils/PULC_label_list/textline_orientation_label_list.txt
136 137 138 139 140 141 142 143

Metric:
  Train:
    - TopkAcc:
        topk: [1, 2]
  Eval:
    - TopkAcc:
        topk: [1, 2]