squeezenet.py 5.9 KB
Newer Older
1 2
import numpy as np
import argparse
W
WuHaobo 已提交
3 4 5
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
from paddle.fluid.dygraph.base import to_variable

from paddle.fluid import framework

import math
import sys
import time

__all__ = ["SqueezeNet1_0", "SqueezeNet1_1"]

class Make_Fire_Conv(fluid.dygraph.Layer):
    def __init__(self, 
                input_channels,
                output_channels,
                filter_size,
                padding=0,
                name=None):
        super(Make_Fire_Conv, self).__init__()
        self._conv = Conv2D(input_channels,
                            output_channels,
                            filter_size, 
                            padding=padding, 
                            act="relu",
                            param_attr=ParamAttr(name=name + "_weights"),
                            bias_attr=ParamAttr(name=name + "_offset"))

    def forward(self, inputs):
        return self._conv(inputs)
W
WuHaobo 已提交
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
class Make_Fire(fluid.dygraph.Layer):
    def __init__(self,
                input_channels,
                squeeze_channels,
                expand1x1_channels,
                expand3x3_channels,
                name=None):
        super(Make_Fire, self).__init__()
        self._conv = Make_Fire_Conv(input_channels,
                                    squeeze_channels,
                                    1,
                                    name=name + "_squeeze1x1")
        self._conv_path1 = Make_Fire_Conv(squeeze_channels,
                                        expand1x1_channels,
                                        1,
                                        name=name + "_expand1x1")
        self._conv_path2 = Make_Fire_Conv(squeeze_channels,
                                        expand3x3_channels,
                                        3,
                                        padding=1,
                                        name=name + "_expand3x3")
W
WuHaobo 已提交
58

59 60 61 62 63
    def forward(self, inputs):
        x = self._conv(inputs)
        x1 = self._conv_path1(x)
        x2 = self._conv_path2(x)
        return fluid.layers.concat([x1, x2], axis=1)
W
WuHaobo 已提交
64

65 66 67
class SqueezeNet(fluid.dygraph.Layer):
    def __init__(self, version, class_dim=1000):
        super(SqueezeNet, self).__init__()
W
WuHaobo 已提交
68 69
        self.version = version

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        if self.version == "1.0":
            self._conv = Conv2D(3,
                                96,
                                7,
                                stride=2,
                                act="relu",
                                param_attr=ParamAttr(name="conv1_weights"),
                                bias_attr=ParamAttr(name="conv1_offset"))
            self._pool = Pool2D(pool_size=3,
                                pool_stride=2,
                                pool_type="max")
            self._conv1 = Make_Fire(96, 16, 64, 64, name="fire2")
            self._conv2 = Make_Fire(128, 16, 64, 64, name="fire3")
            self._conv3 = Make_Fire(128, 32, 128, 128, name="fire4")

            self._conv4 = Make_Fire(256, 32, 128, 128, name="fire5")
            self._conv5 = Make_Fire(256, 48, 192, 192, name="fire6")
            self._conv6 = Make_Fire(384, 48, 192, 192, name="fire7")
            self._conv7 = Make_Fire(384, 64, 256, 256, name="fire8")

            self._conv8 = Make_Fire(512, 64, 256, 256, name="fire9")
W
WuHaobo 已提交
91
        else:
92 93 94 95 96 97 98 99 100 101 102 103 104
            self._conv = Conv2D(3,
                                64,
                                3,
                                stride=2,
                                padding=1,
                                act="relu",
                                param_attr=ParamAttr(name="conv1_weights"),
                                bias_attr=ParamAttr(name="conv1_offset"))
            self._pool = Pool2D(pool_size=3,
                                pool_stride=2,
                                pool_type="max")
            self._conv1 = Make_Fire(64, 16, 64, 64, name="fire2")
            self._conv2 = Make_Fire(128, 16, 64, 64, name="fire3")
W
WuHaobo 已提交
105

106 107
            self._conv3 = Make_Fire(128, 32, 128, 128, name="fire4")
            self._conv4 = Make_Fire(256, 32, 128, 128, name="fire5")
W
WuHaobo 已提交
108

109 110 111 112 113 114 115 116 117 118 119 120 121 122
            self._conv5 = Make_Fire(256, 48, 192, 192, name="fire6")
            self._conv6 = Make_Fire(384, 48, 192, 192, name="fire7")
            self._conv7 = Make_Fire(384, 64, 256, 256, name="fire8")
            self._conv8 = Make_Fire(512, 64, 256, 256, name="fire9")

        self._drop = Dropout(p=0.5)
        self._conv9 = Conv2D(512, 
                            class_dim, 
                            1, 
                            act="relu",
                            param_attr=ParamAttr(name="conv10_weights"),
                            bias_attr=ParamAttr(name="conv10_offset"))
        self._avg_pool = Pool2D(pool_type="avg",
                                global_pooling=True)
W
WuHaobo 已提交
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    def forward(self, inputs):
        x = self._conv(inputs)
        x = self._pool(x)
        if self.version=="1.0":
            x = self._conv1(x)
            x = self._conv2(x)
            x = self._conv3(x)
            x = self._pool(x)
            x = self._conv4(x)
            x = self._conv5(x)
            x = self._conv6(x)
            x = self._conv7(x)
            x = self._pool(x)
            x = self._conv8(x)
        else:
            x = self._conv1(x)
            x = self._conv2(x)
            x = self._pool(x)
            x = self._conv3(x)
            x = self._conv4(x)
            x = self._pool(x)
            x = self._conv5(x)
            x = self._conv6(x)
            x = self._conv7(x)
            x = self._conv8(x)
        x = self._drop(x)
        x = self._conv9(x)
        x = self._avg_pool(x)
        x = fluid.layers.squeeze(x, axes=[2,3])
        return x

def SqueezeNet1_0():
    model = SqueezeNet(version="1.0")
    return model 
W
WuHaobo 已提交
158 159

def SqueezeNet1_1():
160 161
    model = SqueezeNet(version="1.1")
    return model