res2net200_vd_distill_pphgnet_base.yaml 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: "./output/"
  device: "gpu"
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
  epochs: 360
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 224, 224]
  save_inference_dir: "./inference"
  use_dali: false

# mixed precision training
AMP:
G
gaotingquan 已提交
20 21
  use_amp: True
  use_fp16_test: False
22 23
  scale_loss: 128.0
  use_dynamic_loss_scaling: True
G
gaotingquan 已提交
24
  use_promote: False
G
gaotingquan 已提交
25
  # O1: mixed fp16, O2: pure fp16
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  level: O1

# model architecture
Arch:
  name: "DistillationModel"
  class_num: &class_num 1000
  # if not null, its lengths should be same as models
  pretrained_list:
  # if not null, its lengths should be same as models
  freeze_params_list:
  - True
  - False
  models:
    - Teacher:
        name: Res2Net200_vd_26w_4s
        class_num: *class_num
        pretrained: True
        use_ssld: True
    - Student:
        name: PPHGNet_base
        class_num: *class_num
        pretrained: False

  infer_model_name: "Student"


# loss function config for traing/eval process
Loss:
  Train:
    - DistillationCELoss:
        weight: 1.0
        model_name_pairs:
        - ["Student", "Teacher"]
  Eval:
60
    - CELoss:
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        weight: 1.0
        

Optimizer:
  name: Momentum
  momentum: 0.9
  lr:
    name: Cosine
    learning_rate: 0.5
    warmup_epoch: 5
  regularizer:
    name: 'L2'
    coeff: 0.00004


# data loader for train and eval
DataLoader:
  Train:
    dataset:
        name: ImageNetDataset
        image_root: "./dataset/ILSVRC2012/"
        cls_label_path: "./dataset/ILSVRC2012/train_list.txt"
        transform_ops:
          - DecodeImage:
              to_rgb: True
              channel_first: False
          - RandCropImage:
              size: 224
              interpolation: bicubic
              backend: pil
          - RandFlipImage:
              flip_code: 1
          - TimmAutoAugment:
              config_str: rand-m7-mstd0.5-inc1
              interpolation: bicubic
              img_size: 224
          - NormalizeImage:
              scale: 0.00392157
              mean: [0.485, 0.456, 0.406]
              std: [0.229, 0.224, 0.225]
              order: ''

    sampler:
        name: DistributedBatchSampler
        batch_size: 128
        drop_last: False
        shuffle: True
    loader:
        num_workers: 8
        use_shared_memory: True

  Eval:
    dataset: 
        name: ImageNetDataset
        image_root: "./dataset/ILSVRC2012/"
        cls_label_path: "./dataset/ILSVRC2012/val_list.txt"
        transform_ops:
          - DecodeImage:
              to_rgb: True
              channel_first: False
          - ResizeImage:
              resize_short: 236
              interpolation: bicubic
              backend: pil
          - CropImage:
              size: 224
          - NormalizeImage:
              scale: 0.00392157
              mean: [0.485, 0.456, 0.406]
              std: [0.229, 0.224, 0.225]
              order: ''
    sampler:
        name: DistributedBatchSampler
        batch_size: 128
        drop_last: False
        shuffle: False
    loader:
        num_workers: 8
        use_shared_memory: True

Infer:
  infer_imgs: "docs/images/inference_deployment/whl_demo.jpg"
  batch_size: 10
  transforms:
      - DecodeImage:
          to_rgb: True
          channel_first: False
      - ResizeImage:
          resize_short: 236
      - CropImage:
          size: 224
      - NormalizeImage:
          scale: 1.0/255.0
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: ''
      - ToCHWImage:
  PostProcess:
littletomatodonkey's avatar
littletomatodonkey 已提交
159
    name: Topk
160 161 162 163 164 165 166 167 168 169 170 171
    topk: 5
    class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"

Metric:
    Train:
    - DistillationTopkAcc:
        model_key: "Student"
        topk: [1, 5]
    Eval:
    - DistillationTopkAcc:
        model_key: "Student"
        topk: [1, 5]