learning_rate.py 7.2 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import sys
import math

import paddle.fluid as fluid
import paddle.fluid.layers.ops as ops
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter

__all__ = ['LearningRateBuilder']


class Linear(object):
    """
    Linear learning rate decay

    Args:
        lr(float): initial learning rate
        steps(int): total decay steps
        end_lr(float): end learning rate, default: 0.0.
    """

    def __init__(self, lr, steps, end_lr=0.0, **kwargs):
        super(Linear, self).__init__()
        self.lr = lr
        self.steps = steps
        self.end_lr = end_lr

    def __call__(self):
        learning_rate = fluid.layers.polynomial_decay(
            self.lr, self.steps, self.end_lr, power=1)
        return learning_rate


class Cosine(object):
    """
    Cosine learning rate decay
    lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1)

    Args:
        lr(float): initial learning rate
        step_each_epoch(int): steps each epoch
        epochs(int): total training epochs
    """

    def __init__(self, lr, step_each_epoch, epochs, **kwargs):
        super(Cosine, self).__init__()
        self.lr = lr
        self.step_each_epoch = step_each_epoch
        self.epochs = epochs

    def __call__(self):
        learning_rate = fluid.layers.cosine_decay(
            learning_rate=self.lr,
            step_each_epoch=self.step_each_epoch,
            epochs=self.epochs)
        return learning_rate


class Piecewise(object):
    """
    Piecewise learning rate decay

    Args:
        lr(float): initial learning rate
        step_each_epoch(int): steps each epoch
        decay_epochs(list): piecewise decay epochs
        gamma(float): decay factor
    """

    def __init__(self, lr, step_each_epoch, decay_epochs, gamma=0.1, **kwargs):
        super(Piecewise, self).__init__()
        self.bd = [step_each_epoch * e for e in decay_epochs]
        self.lr = [lr * (gamma**i) for i in range(len(self.bd) + 1)]

    def __call__(self):
        learning_rate = fluid.layers.piecewise_decay(self.bd, self.lr)
        return learning_rate


class CosineWarmup(object):
    """
    Cosine learning rate decay with warmup
    [0, warmup_epoch): linear warmup
    [warmup_epoch, epochs): cosine decay

    Args:
        lr(float): initial learning rate
        step_each_epoch(int): steps each epoch
        epochs(int): total training epochs
        warmup_epoch(int): epoch num of warmup
    """

    def __init__(self, lr, step_each_epoch, epochs, warmup_epoch=5, **kwargs):
        super(CosineWarmup, self).__init__()
        self.lr = lr
        self.step_each_epoch = step_each_epoch
        self.epochs = epochs
        self.warmup_epoch = fluid.layers.fill_constant(
            shape=[1],
            value=float(warmup_epoch),
            dtype='float32',
            force_cpu=True)

    def __call__(self):
        global_step = _decay_step_counter()
        learning_rate = fluid.layers.tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="learning_rate")
        epoch = ops.floor(global_step / self.step_each_epoch)
        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(epoch < self.warmup_epoch):
                decayed_lr = self.lr * \
                        (global_step / (self.step_each_epoch * self.warmup_epoch))
                fluid.layers.tensor.assign(
                    input=decayed_lr, output=learning_rate)
            with switch.default():
                current_step = global_step - self.warmup_epoch * self.step_each_epoch
                total_step = (
                    self.epochs - self.warmup_epoch) * self.step_each_epoch
                decayed_lr = self.lr * \
                    (ops.cos(current_step * math.pi / total_step) + 1) / 2
                fluid.layers.tensor.assign(
                    input=decayed_lr, output=learning_rate)

        return learning_rate


S
shippingwang 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
class ExponentialWarmup(object):
    
    """
    Exponential learning rate decay with warmup
    [0, warmup_epoch): linear warmup
    [warmup_epoch, epochs): Exponential decay

    Args:
        lr(float): initial learning rate
        step_each_epoch(int): steps each epoch
        decay_epochs(float): decay epochs
        decay_rate(float): decay rate
        warmup_epoch(int): epoch num of warmup
    """

    def __init__(self, lr, step_each_epoch, decay_epochs=2.4, decay_rate=0.97, warmup_epoch=5, **kwargs):
        super(CosineWarmup, self).__init__()
        self.lr = lr
        self.step_each_epoch = step_each_epoch
        self.decay_epochs = decay_epochs * self.step_each_epoch
        self.decay_rate = decay_rate
        self.warmup_epoch = fluid.layers.fill_constant(
            shape=[1],
            value=float(warmup_epoch),
            dtype='float32',
            force_cpu=True)

    def __call__(self):
        global_step = _decay_step_counter()
        learning_rate = fluid.layers.tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="learning_rate")

        epoch = ops.floor(global_step / self.step_each_epoch)
        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(epoch < self.warmup_epoch):
                decayed_lr = self.lr * \
                        (global_step / (self.step_each_epoch * self.warmup_epoch))
                fluid.layers.tensor.assign(
                    input=decayed_lr, output=learning_rate)
            with switch.default():
                rest_step = global_step - self.warmup_epoch * self.step_each_epoch
                div_res = ops.floor(rest_step / self.decay_epochs)

                decayed_lr = self.lr*(self.decay_rate**div_res)
                fluid.layers.tensor.assign(
                    input=decayed_lr, output=learning_rate)

        return learning_rate

W
WuHaobo 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
class LearningRateBuilder():
    """
    Build learning rate variable
    https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/layers_cn.html

    Args:
        function(str): class name of learning rate
        params(dict): parameters used for init the class
    """

    def __init__(self,
                 function='Linear',
                 params={'lr': 0.1,
                         'steps': 100,
                         'end_lr': 0.0}):
        self.function = function
        self.params = params

    def __call__(self):
        mod = sys.modules[__name__]
        lr = getattr(mod, self.function)(**self.params)()
        return lr