名称 最后提交 最后更新
..
doc/deprecated
doc/4v100_bert_as_service_benchmark.png
doc/ABTEST_IN_PADDLE_SERVING.md
doc/ABTEST_IN_PADDLE_SERVING_CN.md
doc/BENCHMARKING.md
doc/BERT_10_MINS.md
doc/BERT_10_MINS_CN.md
doc/COMPILE.md
doc/COMPILE_CN.md
doc/CONTRIBUTE.md
doc/CUBE_LOCAL.md
doc/CUBE_LOCAL_CN.md
doc/CUBE_QUANT.md
doc/CUBE_QUANT_CN.md
doc/DESIGN.md
doc/DESIGN_CN.md
doc/DESIGN_DOC.md
doc/DESIGN_DOC_CN.md
doc/GPU_BENCHMARKING.md
doc/HOT_LOADING_IN_SERVING.md
doc/HOT_LOADING_IN_SERVING_CN.md
doc/IMDB_GO_CLIENT.md
doc/IMDB_GO_CLIENT_CN.md
doc/INFERNCE_TO_SERVING.md
doc/INFERNCE_TO_SERVING_CN.md
doc/MODEL_ENSEMBLE_IN_PADDLE_SERVING.md
doc/MODEL_ENSEMBLE_IN_PADDLE_SERVING_CN.md
doc/MULTI_SERVICE_ON_ONE_GPU_CN.md
doc/Makefile
doc/NEW_OPERATOR.md
doc/NEW_OPERATOR_CN.md
doc/PERFORMANCE_OPTIM_CN.md
doc/README.md
doc/README_CN.md
doc/RUN_IN_DOCKER.md
doc/RUN_IN_DOCKER_CN.md
doc/SAVE.md
doc/SAVE_CN.md
doc/SERVER_DAG.md
doc/SERVER_DAG_CN.md
doc/TRAIN_TO_SERVICE.md
doc/TRAIN_TO_SERVICE_CN.md
doc/UWSGI_DEPLOY.md
doc/abtest.png
doc/architecture.png
doc/bert-benchmark-batch-size-1.png
doc/blank.png
doc/client-side-proxy.png
doc/client_inferface.png
doc/coding_mode.png
doc/complex_dag.png
doc/criteo-cube-benchmark-avgcost.png
doc/criteo-cube-benchmark-qps.png
doc/cube-cli.png
doc/cube.png
doc/cube_eng.png
doc/demo.gif
doc/design_doc.png
doc/doc_test_list
doc/framework.png
doc/gpu-local-qps-batchsize.png
doc/gpu-local-qps-concurrency.png
doc/gpu-local-time-batchsize.png
doc/gpu-local-time-concurrency.png
doc/gpu-serving-multi-card-multi-concurrency-qps-batchsize-concurrency-client1.png
doc/gpu-serving-multi-card-multi-concurrency-qps-batchsize-concurrency-client2.png
doc/gpu-serving-multi-card-multi-concurrency-time-batchsize-concurrency-client1.png
doc/gpu-serving-multi-card-multi-concurrency-time-batchsize-concurrency-client2.png
doc/gpu-serving-multi-card-single-concurrency-qps-batchsize-client1.png
doc/gpu-serving-multi-card-single-concurrency-qps-batchsize-client2.png
doc/gpu-serving-multi-card-single-concurrency-time-batchsize-client1.png
doc/gpu-serving-multi-card-single-concurrency-time-batchsize-client2.png
doc/gpu-serving-single-card-qps-batchsize.png
doc/gpu-serving-single-card-qps-concurrency.png
doc/gpu-serving-single-card-time-batchsize.png
doc/gpu-serving-single-card-time-concurrency.png
doc/imdb-benchmark-server-16.png
doc/imdb_loss.png
doc/index.rst
doc/markdown2rst.py
doc/model_ensemble_example.png
doc/multi-service.png
doc/multi-variants.png
doc/predict-service.png
doc/pruned-ctr-network.png
doc/qps-threads-bow.png
doc/qps-threads-cnn.png
doc/qps-threads-lstm.png
doc/requirements.txt
doc/server-side.png
doc/server_dag.png
doc/server_interface.png
doc/serving-timings.png
doc/simple_dag.png
doc/timeline-example.png
doc/user_groups.png

项目简介

PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

:rocket: Github 镜像仓库 :rocket:

源项目地址 :arrow_down: :arrow_down: :arrow_down:

https://github.com/paddlepaddle/paddle

deep-learningdistributed-trainingefficiencymachine-learningneural-networkpaddlepaddlepythonscalability

发行版本 60

PaddlePaddle 2.5.0 Release Note

全部发行版

贡献者 246

全部贡献者

开发语言

  • C++ 49.8 %
  • Python 41.0 %
  • Cuda 7.0 %
  • CMake 1.1 %
  • Shell 0.6 %