Benchmark
Machine:
- CPU: 12-core Intel(R) Xeon(R) CPU E5-2620 v2 @2.10GHz
- GPU: Tesla K40m
- cuDNN: v5.1
- system: Docker 1.12.1, all platforms are tested in docker environment.
Platforms:
- PaddlePaddle: paddledev/paddle:gpu-devel-v0.9.0a0
- Tensorflow: gcr.io/tensorflow/tensorflow:0.11.0rc0-gpu
- Caffe: kaixhin/cuda-caffe
Several convolutional neural networks and recurrent neural networks are used to test.
Image
Benchmark Model
AlexNet, GoogleNet and a small network used in Caffe.
Single-GPU
- AlexNet: input - 3 * 227 * 227, Time: ms/batch
BatchSize | 64 | 128 | 256 | 512 |
---|---|---|---|---|
PaddlePaddle | 195 | 334 | 602 | 1629 |
TensorFlow | 223 | 364 | 645 | 1235 |
Caffe | 324 | 627 | 1232 | 2513 |
Notation
All platforms use cuDNN-v5.1. We see that caffe is slower in this experiment, because its workspace limit size of cuDNN-conv interface is 8 * 1024 * 1024, which is smaller in PaddlePaddle and TensorFlow. Note that Caffe will be faster if increasing the workspace limit size.
- GoogletNet: input - 3 * 224 * 224, Time: ms/batch
BatchSize | 64 | 128 | 256 |
---|---|---|---|
PaddlePaddle | 613 | 1149 | 2348 |
TensorFlow | 644 | 1176 | 2219 |
Caffe | 694 | 1364 | out of memory |
- SmallNet: input - 3 * 32 * 32, Time ms/batch
BatchSize | 64 | 128 | 256 | 512 |
---|---|---|---|---|
PaddlePaddle | 10.463 | 18.184 | 33.113 | 63.039 |
TensorFlow | 9 | 15 | 28 | 59 |
Caffe | 9.373 | 16.6606 | 31.4797 | 59.719 |
Notation
All the single-GPU experiments in caffe use caffe time
to calculate elapsed time, which does not include parameter updating time. However, both PaddlePaddle and TensorFlow experiments contain the parameter updating time. As compared with the total time, this part is relatively little on single machine, we can ignore it.
In Tensorflow, they implement algorithm searching method instead of using the algorithm searching interface in cuDNN.
Multi-GPU: 4 GPUs
- AlexNet, ms / batch
total-BatchSize | 128 * 4 | 256 * 4 |
---|---|---|
PaddlePaddle | 347 | 622 |
TensorFlow | 377 | 675 |
Caffe | 1229 | 2435 |
For example, if total-BatchSize = 128 * 4
, the speedup ratio is calculated by
time_at_1gpu_batch_128 * 4 / time_at_4gpu_total_batch_512
= (334 * 4)/347
= 3.85
- GoogleNet, ms / batch
total-BatchSize | 128 * 4 | 256 * 4 |
---|---|---|
PaddlePaddle | 1178 | 2367 |
TensorFlow | 1210 | 2292 |
Caffe | 2007 | out of memory |
RNN
We use lstm network for text classfication to test benchmark.
Dataset
- IMDB
- Sequence length is 100. In fact, PaddlePaddle supports training with variable-length sequence, but TensorFlow needs to pad. Thus, we also pad sequence length to 100 in PaddlePaddle in order to compare.
- Dictionary size=30000
- Peephole connection is used in
lstmemory
by default in PaddlePaddle. It is also configured in TensorFlow.
Single-GPU
LSTM in Text Classification
Testing 2 lstm layer + fc
network with different hidden size and batch size.
- Batch size = 64, ms / batch
hidden_size | 256 | 512 | 1280 |
---|---|---|---|
PaddlePaddle | 83 | 184 | 641 |
TensorFlow | 175 | 280 | 818 |
- Batch size = 128, ms / batch
hidden_size | 256 | 512 | 1280 |
---|---|---|---|
PaddlePaddle | 110 | 261 | 1007 |
TensorFlow | 181 | 361 | 1237 |
- Batch size = 256, ms / batch
hidden_size | 256 | 512 | 1280 |
---|---|---|---|
PaddlePaddle | 170 | 414 | 1655 |
TensorFlow | 238 | 536 | 1905 |
Seq2Seq
The benchmark of sequence-to-sequence network will be added later.
Multi GPU: 4 GPUs
LSTM in Text Classification
- hidden_size = 256, ms / batch
batch_size | 256 | 512 |
---|---|---|
PaddlePaddle | 90 | 118 |
TensorFlow | 226 | 118 |
- hidden_size = 512, ms / batch
batch_size | 256 | 512 |
---|---|---|
PaddlePaddle | 189 | 268 |
TensorFlow | 297 | 383 |
Seq2Seq
The benchmark of sequence-to-sequence network will be added later.