<!DOCTYPE html> <!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]--> <!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]--> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Use Case — PaddlePaddle documentation</title> <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" /> <link rel="index" title="Index" href="../../../genindex.html"/> <link rel="search" title="Search" href="../../../search.html"/> <link rel="top" title="PaddlePaddle documentation" href="../../../index.html"/> <link rel="up" title="Set Command-line Parameters" href="index_en.html"/> <link rel="next" title="Argument Outline" href="arguments_en.html"/> <link rel="prev" title="Set Command-line Parameters" href="index_en.html"/> <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" /> <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" /> <script> var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); </script> <script src="../../../_static/js/modernizr.min.js"></script> </head> <body class="wy-body-for-nav" role="document"> <header class="site-header"> <div class="site-logo"> <a href="/"><img src="../../../_static/images/PP_w.png"></a> </div> <div class="site-nav-links"> <div class="site-menu"> <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a> <div class="language-switcher dropdown"> <a type="button" data-toggle="dropdown"> <span>English</span> <i class="fa fa-angle-up"></i> <i class="fa fa-angle-down"></i> </a> <ul class="dropdown-menu"> <li><a href="/doc_cn">中文</a></li> <li><a href="/doc">English</a></li> </ul> </div> <ul class="site-page-links"> <li><a href="/">Home</a></li> </ul> </div> <div class="doc-module"> <ul class="current"> <li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a></li> <li class="toctree-l1 current"><a class="reference internal" href="../../index_en.html">HOW TO</a></li> <li class="toctree-l1"><a class="reference internal" href="../../../api/index_en.html">API</a></li> </ul> <div role="search"> <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get"> <input type="text" name="q" placeholder="Search docs" /> <input type="hidden" name="check_keywords" value="yes" /> <input type="hidden" name="area" value="default" /> </form> </div> </div> </div> </header> <div class="main-content-wrap"> <nav class="doc-menu-vertical" role="navigation"> <ul class="current"> <li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a><ul> <li class="toctree-l2"><a class="reference internal" href="../../../getstarted/build_and_install/index_en.html">Install and Build</a><ul> <li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li> </ul> </li> </ul> </li> <li class="toctree-l1 current"><a class="reference internal" href="../../index_en.html">HOW TO</a><ul class="current"> <li class="toctree-l2 current"><a class="reference internal" href="index_en.html">Set Command-line Parameters</a><ul class="current"> <li class="toctree-l3 current"><a class="current reference internal" href="#">Use Case</a></li> <li class="toctree-l3"><a class="reference internal" href="arguments_en.html">Argument Outline</a></li> <li class="toctree-l3"><a class="reference internal" href="detail_introduction_en.html">Detail Description</a></li> </ul> </li> <li class="toctree-l2"><a class="reference internal" href="../cluster/cluster_train_en.html">PaddlePaddle Distributed Training</a></li> <li class="toctree-l2"><a class="reference internal" href="../cluster/cluster_train_en.html#introduction">Introduction</a></li> <li class="toctree-l2"><a class="reference internal" href="../cluster/cluster_train_en.html#preparations">Preparations</a></li> <li class="toctree-l2"><a class="reference internal" href="../cluster/cluster_train_en.html#command-line-arguments">Command-line arguments</a></li> <li class="toctree-l2"><a class="reference internal" href="../cluster/cluster_train_en.html#use-cluster-platforms-or-cluster-management-tools">Use cluster platforms or cluster management tools</a></li> <li class="toctree-l2"><a class="reference internal" href="../k8s/k8s_en.html">Paddle On Kubernetes</a></li> <li class="toctree-l2"><a class="reference internal" href="../k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li> <li class="toctree-l2"><a class="reference internal" href="../../dev/build_en.html">Build PaddlePaddle from Source Code and Run Unit Test</a></li> <li class="toctree-l2"><a class="reference internal" href="../../dev/new_layer_en.html">Write New Layers</a></li> <li class="toctree-l2"><a class="reference internal" href="../../dev/contribute_to_paddle_en.html">Contribute Code</a></li> <li class="toctree-l2"><a class="reference internal" href="../../deep_model/rnn/index_en.html">RNN Models</a><ul> <li class="toctree-l3"><a class="reference internal" href="../../deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li> </ul> </li> <li class="toctree-l2"><a class="reference internal" href="../../optimization/gpu_profiling_en.html">Tune GPU Performance</a></li> </ul> </li> <li class="toctree-l1"><a class="reference internal" href="../../../api/index_en.html">API</a><ul> <li class="toctree-l2"><a class="reference internal" href="../../../api/v2/model_configs.html">Model Configuration</a><ul> <li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/activation.html">Activation</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/layer.html">Layers</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/evaluators.html">Evaluators</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/optimizer.html">Optimizer</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/pooling.html">Pooling</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/networks.html">Networks</a></li> <li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/attr.html">Parameter Attribute</a></li> </ul> </li> <li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Data Reader Interface and DataSets</a></li> <li class="toctree-l2"><a class="reference internal" href="../../../api/v2/run_logic.html">Training and Inference</a></li> </ul> </li> </ul> </nav> <section class="doc-content-wrap"> <div role="navigation" aria-label="breadcrumbs navigation"> <ul class="wy-breadcrumbs"> <li><a href="../../index_en.html">HOW TO</a> > </li> <li><a href="index_en.html">Set Command-line Parameters</a> > </li> <li>Use Case</li> </ul> </div> <div class="wy-nav-content" id="doc-content"> <div class="rst-content"> <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article"> <div itemprop="articleBody"> <div class="section" id="use-case"> <span id="use-case"></span><h1>Use Case<a class="headerlink" href="#use-case" title="Permalink to this headline">¶</a></h1> <div class="section" id="local-training"> <span id="local-training"></span><h2>Local Training<a class="headerlink" href="#local-training" title="Permalink to this headline">¶</a></h2> <p>These command line arguments are commonly used by local training experiments, such as image classification, natural language processing, et al.</p> <div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">paddle</span> <span class="n">train</span> \ <span class="o">--</span><span class="n">use_gpu</span><span class="o">=</span><span class="mi">1</span><span class="o">/</span><span class="mi">0</span> \ <span class="c1">#1:GPU,0:CPU(default:true)</span> <span class="o">--</span><span class="n">config</span><span class="o">=</span><span class="n">network_config</span> \ <span class="o">--</span><span class="n">save_dir</span><span class="o">=</span><span class="n">output</span> \ <span class="o">--</span><span class="n">trainer_count</span><span class="o">=</span><span class="n">COUNT</span> \ <span class="c1">#(default:1)</span> <span class="o">--</span><span class="n">test_period</span><span class="o">=</span><span class="n">M</span> \ <span class="c1">#(default:0) </span> <span class="o">--</span><span class="n">num_passes</span><span class="o">=</span><span class="n">N</span> \ <span class="c1">#(defalut:100)</span> <span class="o">--</span><span class="n">log_period</span><span class="o">=</span><span class="n">K</span> \ <span class="c1">#(default:100)</span> <span class="o">--</span><span class="n">dot_period</span><span class="o">=</span><span class="mi">1000</span> \ <span class="c1">#(default:1)</span> <span class="c1">#[--show_parameter_stats_period=100] \ #(default:0)</span> <span class="c1">#[--saving_period_by_batches=200] \ #(default:0)</span> </pre></div> </div> <p><code class="docutils literal"><span class="pre">show_parameter_stats_period</span></code> and <code class="docutils literal"><span class="pre">saving_period_by_batches</span></code> are optional according to your task.</p> <div class="section" id="pass-command-argument-to-network-config"> <span id="pass-command-argument-to-network-config"></span><h3>1) Pass Command Argument to Network config<a class="headerlink" href="#pass-command-argument-to-network-config" title="Permalink to this headline">¶</a></h3> <p><code class="docutils literal"><span class="pre">config_args</span></code> is a useful parameter to pass arguments to network config.</p> <div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">--</span><span class="n">config_args</span><span class="o">=</span><span class="n">generating</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span><span class="n">beam_size</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span><span class="n">layer_num</span><span class="o">=</span><span class="mi">10</span> \ </pre></div> </div> <p>And <code class="docutils literal"><span class="pre">get_config_arg</span></code> can be used to parse these arguments in network config as follows:</p> <div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">generating</span> <span class="o">=</span> <span class="n">get_config_arg</span><span class="p">(</span><span class="s1">'generating'</span><span class="p">,</span> <span class="nb">bool</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span> <span class="n">beam_size</span> <span class="o">=</span> <span class="n">get_config_arg</span><span class="p">(</span><span class="s1">'beam_size'</span><span class="p">,</span> <span class="nb">int</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span> <span class="n">layer_num</span> <span class="o">=</span> <span class="n">get_config_arg</span><span class="p">(</span><span class="s1">'layer_num'</span><span class="p">,</span> <span class="nb">int</span><span class="p">,</span> <span class="mi">8</span><span class="p">)</span> </pre></div> </div> <p><code class="docutils literal"><span class="pre">get_config_arg</span></code>:</p> <div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">get_config_arg</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="nb">type</span><span class="p">,</span> <span class="n">default_value</span><span class="p">)</span> </pre></div> </div> <ul class="simple"> <li>name: the name specified in the <code class="docutils literal"><span class="pre">--config_args</span></code></li> <li>type: value type, bool, int, str, float etc.</li> <li>default_value: default value if not set.</li> </ul> </div> <div class="section" id="use-model-to-initialize-network"> <span id="use-model-to-initialize-network"></span><h3>2) Use Model to Initialize Network<a class="headerlink" href="#use-model-to-initialize-network" title="Permalink to this headline">¶</a></h3> <p>add argument:</p> <div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">--</span><span class="n">init_model_path</span><span class="o">=</span><span class="n">model_path</span> <span class="o">--</span><span class="n">load_missing_parameter_strategy</span><span class="o">=</span><span class="n">rand</span> </pre></div> </div> </div> </div> <div class="section" id="local-testing"> <span id="local-testing"></span><h2>Local Testing<a class="headerlink" href="#local-testing" title="Permalink to this headline">¶</a></h2> <p>Method 1:</p> <div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">paddle</span> <span class="n">train</span> <span class="o">--</span><span class="n">job</span><span class="o">=</span><span class="n">test</span> \ <span class="o">--</span><span class="n">use_gpu</span><span class="o">=</span><span class="mi">1</span><span class="o">/</span><span class="mi">0</span> \ <span class="o">--</span><span class="n">config</span><span class="o">=</span><span class="n">network_config</span> \ <span class="o">--</span><span class="n">trainer_count</span><span class="o">=</span><span class="n">COUNT</span> \ <span class="o">--</span><span class="n">init_model_path</span><span class="o">=</span><span class="n">model_path</span> \ </pre></div> </div> <ul class="simple"> <li>use init_model_path to specify test model.</li> <li>only can test one model.</li> </ul> <p>Method 2:</p> <div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">paddle</span> <span class="n">train</span> <span class="o">--</span><span class="n">job</span><span class="o">=</span><span class="n">test</span> \ <span class="o">--</span><span class="n">use_gpu</span><span class="o">=</span><span class="mi">1</span><span class="o">/</span><span class="mi">0</span> \ <span class="o">--</span><span class="n">config</span><span class="o">=</span><span class="n">network_config</span> \ <span class="o">--</span><span class="n">trainer_count</span><span class="o">=</span><span class="n">COUNT</span> \ <span class="o">--</span><span class="n">model_list</span><span class="o">=</span><span class="n">model</span><span class="o">.</span><span class="n">list</span> \ </pre></div> </div> <ul class="simple"> <li>use model_list to specify test models</li> <li>can test several models, where model.list likes:</li> </ul> <div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">./</span><span class="n">alexnet_pass1</span> <span class="o">./</span><span class="n">alexnet_pass2</span> </pre></div> </div> <p>Method 3:</p> <div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">paddle</span> <span class="n">train</span> <span class="o">--</span><span class="n">job</span><span class="o">=</span><span class="n">test</span> \ <span class="o">--</span><span class="n">use_gpu</span><span class="o">=</span><span class="mi">1</span><span class="o">/</span><span class="mi">0</span> \ <span class="o">--</span><span class="n">config</span><span class="o">=</span><span class="n">network_config</span> \ <span class="o">--</span><span class="n">trainer_count</span><span class="o">=</span><span class="n">COUNT</span> \ <span class="o">--</span><span class="n">save_dir</span><span class="o">=</span><span class="n">model</span> \ <span class="o">--</span><span class="n">test_pass</span><span class="o">=</span><span class="n">M</span> \ <span class="o">--</span><span class="n">num_passes</span><span class="o">=</span><span class="n">N</span> \ </pre></div> </div> <p>This way must use model path saved by Paddle like this: <code class="docutils literal"><span class="pre">model/pass-%5d</span></code>. Testing model is from M-th pass to (N-1)-th pass. For example: M=12 and N=14 will test <code class="docutils literal"><span class="pre">model/pass-00012</span></code> and <code class="docutils literal"><span class="pre">model/pass-00013</span></code>.</p> </div> <div class="section" id="sparse-training"> <span id="sparse-training"></span><h2>Sparse Training<a class="headerlink" href="#sparse-training" title="Permalink to this headline">¶</a></h2> <p>Sparse training is usually used to accelerate calculation when input is sparse data with highly dimension. For example, dictionary dimension of input data is 1 million, but one sample just have several words. In paddle, sparse matrix multiplication is used in forward propagation and sparse updating is perfomed on weight updating after backward propagation.</p> <div class="section" id="local-training"> <span id="id1"></span><h3>1) Local training<a class="headerlink" href="#local-training" title="Permalink to this headline">¶</a></h3> <p>You need to set <strong>sparse_update=True</strong> in network config. Check the network config documentation for more details.</p> </div> <div class="section" id="cluster-training"> <span id="cluster-training"></span><h3>2) cluster training<a class="headerlink" href="#cluster-training" title="Permalink to this headline">¶</a></h3> <p>Add the following argument for cluster training of a sparse model. At the same time you need to set <strong>sparse_remote_update=True</strong> in network config. Check the network config documentation for more details.</p> <div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">--</span><span class="n">ports_num_for_sparse</span><span class="o">=</span><span class="mi">1</span> <span class="c1">#(default: 0)</span> </pre></div> </div> </div> </div> <div class="section" id="parallel-nn"> <span id="parallel-nn"></span><h2>parallel_nn<a class="headerlink" href="#parallel-nn" title="Permalink to this headline">¶</a></h2> <p><code class="docutils literal"><span class="pre">parallel_nn</span></code> can be set to mixed use of GPUs and CPUs to compute layers. That is to say, you can deploy network to use a GPU to compute some layers and use a CPU to compute other layers. The other way is to split layers into different GPUs, which can <strong>reduce GPU memory</strong> or <strong>use parallel computation to accelerate some layers</strong>.</p> <p>If you want to use these characteristics, you need to specify device ID in network config (denote it as deviceId) and add command line argument:</p> <div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">--</span><span class="n">parallel_nn</span><span class="o">=</span><span class="n">true</span> </pre></div> </div> <div class="section" id="case-1-mixed-use-of-gpu-and-cpu"> <span id="case-1-mixed-use-of-gpu-and-cpu"></span><h3>case 1: Mixed Use of GPU and CPU<a class="headerlink" href="#case-1-mixed-use-of-gpu-and-cpu" title="Permalink to this headline">¶</a></h3> <p>Consider the following example:</p> <div class="highlight-default"><div class="highlight"><pre><span></span><span class="c1">#command line:</span> <span class="n">paddle</span> <span class="n">train</span> <span class="o">--</span><span class="n">use_gpu</span><span class="o">=</span><span class="n">true</span> <span class="o">--</span><span class="n">parallel_nn</span><span class="o">=</span><span class="n">true</span> <span class="n">trainer_count</span><span class="o">=</span><span class="n">COUNT</span> <span class="n">default_device</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="n">fc1</span><span class="o">=</span><span class="n">fc_layer</span><span class="p">(</span><span class="o">...</span><span class="p">)</span> <span class="n">fc2</span><span class="o">=</span><span class="n">fc_layer</span><span class="p">(</span><span class="o">...</span><span class="p">)</span> <span class="n">fc3</span><span class="o">=</span><span class="n">fc_layer</span><span class="p">(</span><span class="o">...</span><span class="p">,</span><span class="n">layer_attr</span><span class="o">=</span><span class="n">ExtraAttr</span><span class="p">(</span><span class="n">device</span><span class="o">=-</span><span class="mi">1</span><span class="p">))</span> </pre></div> </div> <ul class="simple"> <li>default_device(0): set default device ID to 0. This means that except the layers with device=-1, all layers will use a GPU, and the specific GPU used for each layer depends on trainer_count and gpu_id (0 by default). Here, layer fc1 and fc2 are computed on the GPU.</li> <li>device=-1: use the CPU for layer fc3.</li> <li>trainer_count:<ul> <li>trainer_count=1: if gpu_id is not set, then use the first GPU to compute layers fc1 and fc2. Otherwise use the GPU with gpu_id.</li> <li>trainer_count>1: use trainer_count GPUs to compute one layer using data parallelism. For example, trainer_count=2 means that GPUs 0 and 1 will use data parallelism to compute layer fc1 and fc2.</li> </ul> </li> </ul> </div> <div class="section" id="case-2-specify-layers-in-different-devices"> <span id="case-2-specify-layers-in-different-devices"></span><h3>Case 2: Specify Layers in Different Devices<a class="headerlink" href="#case-2-specify-layers-in-different-devices" title="Permalink to this headline">¶</a></h3> <div class="highlight-default"><div class="highlight"><pre><span></span><span class="c1">#command line:</span> <span class="n">paddle</span> <span class="n">train</span> <span class="o">--</span><span class="n">use_gpu</span><span class="o">=</span><span class="n">true</span> <span class="o">--</span><span class="n">parallel_nn</span><span class="o">=</span><span class="n">true</span> <span class="o">--</span><span class="n">trainer_count</span><span class="o">=</span><span class="n">COUNT</span> <span class="c1">#network:</span> <span class="n">fc2</span><span class="o">=</span><span class="n">fc_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">l1</span><span class="p">,</span> <span class="n">layer_attr</span><span class="o">=</span><span class="n">ExtraAttr</span><span class="p">(</span><span class="n">device</span><span class="o">=</span><span class="mi">0</span><span class="p">),</span> <span class="o">...</span><span class="p">)</span> <span class="n">fc3</span><span class="o">=</span><span class="n">fc_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">l1</span><span class="p">,</span> <span class="n">layer_attr</span><span class="o">=</span><span class="n">ExtraAttr</span><span class="p">(</span><span class="n">device</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span> <span class="o">...</span><span class="p">)</span> <span class="n">fc4</span><span class="o">=</span><span class="n">fc_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">fc2</span><span class="p">,</span> <span class="n">layer_attr</span><span class="o">=</span><span class="n">ExtraAttr</span><span class="p">(</span><span class="n">device</span><span class="o">=-</span><span class="mi">1</span><span class="p">),</span> <span class="o">...</span><span class="p">)</span> </pre></div> </div> <p>In this case, we assume that there are 4 GPUs in one machine.</p> <ul class="simple"> <li>trainer_count=1:<ul> <li>Use GPU 0 to compute layer fc2.</li> <li>Use GPU 1 to compute layer fc3.</li> <li>Use CPU to compute layer fc4.</li> </ul> </li> <li>trainer_count=2:<ul> <li>Use GPU 0 and 1 to compute layer fc2.</li> <li>Use GPU 2 and 3 to compute layer fc3.</li> <li>Use CPU to compute fc4 in two threads.</li> </ul> </li> <li>trainer_count=4:<ul> <li>It will fail (note, we have assumed that there are 4 GPUs in machine), because argument <code class="docutils literal"><span class="pre">allow_only_one_model_on_one_gpu</span></code> is true by default.</li> </ul> </li> </ul> <p><strong>Allocation of device ID when <code class="docutils literal"><span class="pre">device!=-1</span></code></strong>:</p> <div class="highlight-default"><div class="highlight"><pre><span></span><span class="p">(</span><span class="n">deviceId</span> <span class="o">+</span> <span class="n">gpu_id</span> <span class="o">+</span> <span class="n">threadId</span> <span class="o">*</span> <span class="n">numLogicalDevices_</span><span class="p">)</span> <span class="o">%</span> <span class="n">numDevices_</span> <span class="n">deviceId</span><span class="p">:</span> <span class="n">specified</span> <span class="ow">in</span> <span class="n">layer</span><span class="o">.</span> <span class="n">gpu_id</span><span class="p">:</span> <span class="mi">0</span> <span class="n">by</span> <span class="n">default</span><span class="o">.</span> <span class="n">threadId</span><span class="p">:</span> <span class="n">thread</span> <span class="n">ID</span><span class="p">,</span> <span class="nb">range</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="o">...</span><span class="p">,</span> <span class="n">trainer_count</span><span class="o">-</span><span class="mi">1</span> <span class="n">numDevices_</span><span class="p">:</span> <span class="n">device</span> <span class="p">(</span><span class="n">GPU</span><span class="p">)</span> <span class="n">count</span> <span class="ow">in</span> <span class="n">machine</span><span class="o">.</span> <span class="n">numLogicalDevices_</span><span class="p">:</span> <span class="nb">min</span><span class="p">(</span><span class="nb">max</span><span class="p">(</span><span class="n">deviceId</span> <span class="o">+</span> <span class="mi">1</span><span class="p">),</span> <span class="n">numDevices_</span><span class="p">)</span> </pre></div> </div> </div> </div> </div> </div> </div> <footer> <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation"> <a href="arguments_en.html" class="btn btn-neutral float-right" title="Argument Outline" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a> <a href="index_en.html" class="btn btn-neutral" title="Set Command-line Parameters" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a> </div> <hr/> <div role="contentinfo"> <p> © Copyright 2016, PaddlePaddle developers. </p> </div> Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. </footer> </div> </div> </section> </div> <script type="text/javascript"> var DOCUMENTATION_OPTIONS = { URL_ROOT:'../../../', VERSION:'', COLLAPSE_INDEX:false, FILE_SUFFIX:'.html', HAS_SOURCE: true, SOURCELINK_SUFFIX: ".txt", }; </script> <script type="text/javascript" src="../../../_static/jquery.js"></script> <script type="text/javascript" src="../../../_static/underscore.js"></script> <script type="text/javascript" src="../../../_static/doctools.js"></script> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <script type="text/javascript" src="../../../_static/js/theme.js"></script> <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script> <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script> <script src="../../../_static/js/paddle_doc_init.js"></script> </body> </html>