<!DOCTYPE html> <!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]--> <!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]--> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>PaddlePaddle in Docker Containers — PaddlePaddle documentation</title> <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" /> <link rel="index" title="Index" href="../../genindex.html"/> <link rel="search" title="Search" href="../../search.html"/> <link rel="top" title="PaddlePaddle documentation" href="../../index.html"/> <link rel="up" title="Install and Build" href="index_en.html"/> <link rel="next" title="Installing from Sources" href="build_from_source_en.html"/> <link rel="prev" title="Install and Build" href="index_en.html"/> <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" /> <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" /> <script> var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); </script> <script src="../../_static/js/modernizr.min.js"></script> </head> <body class="wy-body-for-nav" role="document"> <header class="site-header"> <div class="site-logo"> <a href="/"><img src="../../_static/images/PP_w.png"></a> </div> <div class="site-nav-links"> <div class="site-menu"> <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a> <div class="language-switcher dropdown"> <a type="button" data-toggle="dropdown"> <span>English</span> <i class="fa fa-angle-up"></i> <i class="fa fa-angle-down"></i> </a> <ul class="dropdown-menu"> <li><a href="/doc_cn">中文</a></li> <li><a href="/doc">English</a></li> </ul> </div> <ul class="site-page-links"> <li><a href="/">Home</a></li> </ul> </div> <div class="doc-module"> <ul class="current"> <li class="toctree-l1 current"><a class="reference internal" href="../index_en.html">GET STARTED</a></li> <li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a></li> <li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a></li> </ul> <div role="search"> <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get"> <input type="text" name="q" placeholder="Search docs" /> <input type="hidden" name="check_keywords" value="yes" /> <input type="hidden" name="area" value="default" /> </form> </div> </div> </div> </header> <div class="main-content-wrap"> <nav class="doc-menu-vertical" role="navigation"> <ul class="current"> <li class="toctree-l1 current"><a class="reference internal" href="../index_en.html">GET STARTED</a><ul class="current"> <li class="toctree-l2 current"><a class="reference internal" href="index_en.html">Install and Build</a><ul class="current"> <li class="toctree-l3 current"><a class="current reference internal" href="#">PaddlePaddle in Docker Containers</a></li> <li class="toctree-l3"><a class="reference internal" href="build_from_source_en.html">Installing from Sources</a></li> </ul> </li> </ul> </li> <li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a><ul> <li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul> <li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li> <li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li> <li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li> </ul> </li> <li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_en.html">PaddlePaddle Distributed Training</a></li> <li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_en.html#introduction">Introduction</a></li> <li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_en.html#preparations">Preparations</a></li> <li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_en.html#command-line-arguments">Command-line arguments</a></li> <li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_en.html#use-cluster-platforms-or-cluster-management-tools">Use cluster platforms or cluster management tools</a></li> <li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li> <li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li> <li class="toctree-l2"><a class="reference internal" href="../../howto/dev/build_en.html">Build PaddlePaddle from Source Code and Run Unit Test</a></li> <li class="toctree-l2"><a class="reference internal" href="../../howto/dev/new_layer_en.html">Write New Layers</a></li> <li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li> <li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_en.html">RNN Models</a><ul> <li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li> </ul> </li> <li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li> </ul> </li> <li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a><ul> <li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">Model Configuration</a><ul> <li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li> <li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li> <li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li> <li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li> <li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li> <li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li> <li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li> </ul> </li> <li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li> <li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li> </ul> </li> </ul> </nav> <section class="doc-content-wrap"> <div role="navigation" aria-label="breadcrumbs navigation"> <ul class="wy-breadcrumbs"> <li><a href="../index_en.html">GET STARTED</a> > </li> <li><a href="index_en.html">Install and Build</a> > </li> <li>PaddlePaddle in Docker Containers</li> </ul> </div> <div class="wy-nav-content" id="doc-content"> <div class="rst-content"> <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article"> <div itemprop="articleBody"> <div class="section" id="paddlepaddle-in-docker-containers"> <h1>PaddlePaddle in Docker Containers<a class="headerlink" href="#paddlepaddle-in-docker-containers" title="Permalink to this headline">¶</a></h1> <p>Docker container is currently the only officially-supported way to running PaddlePaddle. This is reasonable as Docker now runs on all major operating systems including Linux, Mac OS X, and Windows. Please be aware that you will need to change <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/issues/627">Dockers settings</a> to make full use of your hardware resource on Mac OS X and Windows.</p> <div class="section" id="working-with-docker"> <h2>Working With Docker<a class="headerlink" href="#working-with-docker" title="Permalink to this headline">¶</a></h2> <p>Docker is simple as long as we understand a few basic concepts:</p> <ul> <li><p class="first"><em>image</em>: A Docker image is a pack of software. It could contain one or more programs and all their dependencies. For example, the PaddlePaddle’s Docker image includes pre-built PaddlePaddle and Python and many Python packages. We can run a Docker image directly, other than installing all these software. We can type</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>docker images </pre></div> </div> <p>to list all images in the system. We can also run</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>docker pull paddlepaddle/paddle:0.10.0 </pre></div> </div> <p>to download a Docker image, paddlepaddle/paddle in this example, from Dockerhub.com.</p> </li> <li><p class="first"><em>container</em>: considering a Docker image a program, a container is a “process” that runs the image. Indeed, a container is exactly an operating system process, but with a virtualized filesystem, network port space, and other virtualized environment. We can type</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>docker run paddlepaddle/paddle:0.10.0 </pre></div> </div> <p>to start a container to run a Docker image, paddlepaddle/paddle in this example.</p> </li> <li><p class="first">By default docker container have an isolated file system namespace, we can not see the files in the host file system. By using <em>volume</em>, mounted files in host will be visible inside docker container. Following command will mount current dirctory into /data inside docker container, run docker container from debian image with command <code class="code docutils literal"><span class="pre">ls</span> <span class="pre">/data</span></code>.</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>docker run --rm -v <span class="k">$(</span><span class="nb">pwd</span><span class="k">)</span>:/data debian ls /data </pre></div> </div> </li> </ul> </div> <div class="section" id="usage-of-cpu-only-and-gpu-images"> <h2>Usage of CPU-only and GPU Images<a class="headerlink" href="#usage-of-cpu-only-and-gpu-images" title="Permalink to this headline">¶</a></h2> <p>We package PaddlePaddle’s compile environment into a Docker image, called the develop image, it contains all compiling tools that PaddlePaddle needs. We package compiled PaddlePaddle program into a Docker image as well, called the production image, it contains all runtime environment that running PaddlePaddle needs. For each version of PaddlePaddle, we release both of them. Production image includes CPU-only version and a CUDA GPU version and their no-AVX versions.</p> <p>We put the docker images on <a class="reference external" href="https://hub.docker.com/r/paddlepaddle/paddle/tags/">dockerhub.com</a>. You can find the latest versions under “tags” tab at dockerhub.com.</p> <p>** NOTE: If you are in China, you can use our Docker image registry mirror to speed up the download process. To use it, please replace all paddlepaddle/paddle in the commands to docker.paddlepaddle.org/paddle.**</p> <ol class="arabic"> <li><p class="first">development image <code class="code docutils literal"><span class="pre">paddlepaddle/paddle:<version>-dev</span></code></p> <p>This image has packed related develop tools and runtime environment. Users and developers can use this image instead of their own local computer to accomplish development, build, releasing, document writing etc. While different version of paddle may depends on different version of libraries and tools, if you want to setup a local environment, you must pay attention to the versions. The development image contains:</p> <ul class="simple"> <li>gcc/clang</li> <li>nvcc</li> <li>Python</li> <li>sphinx</li> <li>woboq</li> <li>sshd</li> </ul> <p>Many developers use servers with GPUs, they can use ssh to login to the server and run <code class="code docutils literal"><span class="pre">docker</span> <span class="pre">exec</span></code> to enter the docker container and start their work. Also they can start a development docker image with SSHD service, so they can login to the container and start work.</p> </li> <li><p class="first">Production images, this image might have multiple variants:</p> <ul class="simple"> <li>GPU/AVX:<code class="code docutils literal"><span class="pre">paddlepaddle/paddle:<version>-gpu</span></code></li> <li>GPU/no-AVX:<code class="code docutils literal"><span class="pre">paddlepaddle/paddle:<version>-gpu-noavx</span></code></li> <li>CPU/AVX:<code class="code docutils literal"><span class="pre">paddlepaddle/paddle:<version></span></code></li> <li>CPU/no-AVX:<code class="code docutils literal"><span class="pre">paddlepaddle/paddle:<version>-noavx</span></code></li> </ul> <p>Please be aware that the CPU-only and the GPU images both use the AVX instruction set, but old computers produced before 2008 do not support AVX. The following command checks if your Linux computer supports AVX:</p> <div class="highlight-bash"><div class="highlight"><pre><span></span><span class="k">if</span> cat /proc/cpuinfo <span class="p">|</span> grep -i avx<span class="p">;</span> <span class="k">then</span> <span class="nb">echo</span> Yes<span class="p">;</span> <span class="k">else</span> <span class="nb">echo</span> No<span class="p">;</span> <span class="k">fi</span> </pre></div> </div> <p><strong>NOTE:versions after 0.10.0 will automatically detect system AVX support, so manual detect is not needed in this case.</strong> To run the CPU-only image as an interactive container:</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>docker run -it --rm paddlepaddle/paddle:0.10.0 /bin/bash </pre></div> </div> <p>Above method work with the GPU image too – the recommended way is using <a class="reference external" href="https://github.com/NVIDIA/nvidia-docker">nvidia-docker</a>.</p> <p>Please install nvidia-docker first following this <a class="reference external" href="https://github.com/NVIDIA/nvidia-docker#quick-start">tutorial</a>.</p> <p>Now you can run a GPU image:</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>nvidia-docker run -it --rm paddlepaddle/paddle:0.10.0-gpu /bin/bash </pre></div> </div> </li> </ol> </div> <div class="section" id="train-model-using-python-api"> <h2>Train Model Using Python API<a class="headerlink" href="#train-model-using-python-api" title="Permalink to this headline">¶</a></h2> <p>Our official docker image provides a runtime for PaddlePaddle programs. The typical workflow will be as follows:</p> <p>Create a directory as workspace:</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>mkdir ~/workspace </pre></div> </div> <p>Edit a PaddlePaddle python program using your favourite editor</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>emacs ~/workspace/example.py </pre></div> </div> <p>Run the program using docker:</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>docker run --rm -v ~/workspace:/workspace paddlepaddle/paddle:0.10.0 python /workspace/example.py </pre></div> </div> <p>Or if you are using GPU for training:</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>nvidia-docker run --rm -v ~/workspace:/workspace paddlepaddle/paddle:0.10.0-gpu python /workspace/example.py </pre></div> </div> <p>Above commands will start a docker container by running <code class="code docutils literal"><span class="pre">python</span> <span class="pre">/workspace/example.py</span></code>. It will stop once <code class="code docutils literal"><span class="pre">python</span> <span class="pre">/workspace/example.py</span></code> finishes.</p> <p>Another way is to tell docker to start a <code class="code docutils literal"><span class="pre">/bin/bash</span></code> session and run PaddlePaddle program interactively:</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>docker run -it -v ~/workspace:/workspace paddlepaddle/paddle:0.10.0 /bin/bash <span class="c1"># now we are inside docker container</span> <span class="nb">cd</span> /workspace python example.py </pre></div> </div> <p>Running with GPU is identical:</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>nvidia-docker run -it -v ~/workspace:/workspace paddlepaddle/paddle:0.10.0-gpu /bin/bash <span class="c1"># now we are inside docker container</span> <span class="nb">cd</span> /workspace python example.py </pre></div> </div> </div> <div class="section" id="develop-paddlepaddle-or-train-model-using-c-api"> <h2>Develop PaddlePaddle or Train Model Using C++ API<a class="headerlink" href="#develop-paddlepaddle-or-train-model-using-c-api" title="Permalink to this headline">¶</a></h2> <p>We will be using PaddlePaddle development image since it contains all compiling tools and dependencies.</p> <ol class="arabic"> <li><p class="first">Build PaddlePaddle develop image</p> <p>Use following command to build PaddlePaddle develop image:</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>git clone https://github.com/PaddlePaddle/Paddle.git <span class="o">&&</span> <span class="nb">cd</span> Paddle docker build -t paddle:dev . </pre></div> </div> </li> <li><p class="first">Build PaddlePaddle production image</p> <p>There are two steps for building production image, the first step is to run:</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>docker run -v <span class="k">$(</span><span class="nb">pwd</span><span class="k">)</span>:/paddle -e <span class="s2">"WITH_GPU=OFF"</span> -e <span class="s2">"WITH_AVX=OFF"</span> -e <span class="s2">"WITH_TEST=ON"</span> paddle:dev </pre></div> </div> <p>The above command will compile PaddlePaddle and create a Dockerfile for building production image. All the generated files are in the build directory. “WITH_GPU” controls if the generated production image supports GPU. “WITH_AVX” controls if the generated production image supports AVX. “WITH_TEST” controls if the unit test will be generated.</p> <p>The second step is to run:</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>docker build -t paddle:prod -f build/Dockerfile ./build </pre></div> </div> <p>The above command will generate the production image by copying the compiled PaddlePaddle program into the image.</p> </li> <li><p class="first">Run unit test</p> <p>Following command will run unit test:</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>docker run -it -v <span class="k">$(</span><span class="nb">pwd</span><span class="k">)</span>:/paddle paddle:dev bash -c <span class="s2">"cd /paddle/build && ctest"</span> </pre></div> </div> </li> </ol> </div> <div class="section" id="paddlepaddle-book"> <h2>PaddlePaddle Book<a class="headerlink" href="#paddlepaddle-book" title="Permalink to this headline">¶</a></h2> <p>The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and explanatory text in a single browser.</p> <p>PaddlePaddle Book is an interactive Jupyter Notebook for users and developers. We already exposed port 8888 for this book. If you want to dig deeper into deep learning, PaddlePaddle Book definitely is your best choice.</p> <p>We provide a packaged book image, simply issue the command:</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>docker run -p <span class="m">8888</span>:8888 paddlepaddle/book </pre></div> </div> <p>Then, you would back and paste the address into the local browser:</p> <div class="highlight-text"><div class="highlight"><pre><span></span>http://localhost:8888/ </pre></div> </div> <p>That’s all. Enjoy your journey!</p> </div> <div class="section" id="documentation"> <h2>Documentation<a class="headerlink" href="#documentation" title="Permalink to this headline">¶</a></h2> <p>Paddle Docker images include an HTML version of C++ source code generated using <a class="reference external" href="https://github.com/woboq/woboq_codebrowser">woboq code browser</a>. This makes it easy for users to browse and understand the C++ source code.</p> <p>As long as we give the Paddle Docker container a name, we can run an additional Nginx Docker container to serve the volume from the Paddle container:</p> <div class="highlight-bash"><div class="highlight"><pre><span></span>docker run -d --name paddle-cpu-doc paddle:<version> docker run -d --volumes-from paddle-cpu-doc -p <span class="m">8088</span>:80 nginx </pre></div> </div> <p>Then we can direct our Web browser to the HTML version of source code at <a class="reference external" href="http://localhost:8088/paddle/">http://localhost:8088/paddle/</a></p> </div> </div> </div> </div> <footer> <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation"> <a href="build_from_source_en.html" class="btn btn-neutral float-right" title="Installing from Sources" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a> <a href="index_en.html" class="btn btn-neutral" title="Install and Build" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a> </div> <hr/> <div role="contentinfo"> <p> © Copyright 2016, PaddlePaddle developers. </p> </div> Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. </footer> </div> </div> </section> </div> <script type="text/javascript"> var DOCUMENTATION_OPTIONS = { URL_ROOT:'../../', VERSION:'', COLLAPSE_INDEX:false, FILE_SUFFIX:'.html', HAS_SOURCE: true, SOURCELINK_SUFFIX: ".txt", }; </script> <script type="text/javascript" src="../../_static/jquery.js"></script> <script type="text/javascript" src="../../_static/underscore.js"></script> <script type="text/javascript" src="../../_static/doctools.js"></script> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <script type="text/javascript" src="../../_static/js/theme.js"></script> <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script> <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script> <script src="../../_static/js/paddle_doc_init.js"></script> </body> </html>