Training and Inference¶
Parameters¶
-
class
paddle.v2.parameters.
Parameters
Parameters is a dictionary contains Paddle’s parameter. The key of Parameters is the name of parameter. The value of Parameters is a plain
numpy.ndarry
.Basically usage is
data = paddle.layers.data(...) ... out = paddle.layers.fc(...) parameters = paddle.parameters.create(out) parameter_names = parameters.names() fc_mat = parameters.get('fc') print fc_mat
-
keys
() keys are the names of each parameter.
Returns: list of parameter name Return type: list
-
names
() names of each parameter.
Returns: list of parameter name Return type: list
-
has_key
(key) has_key return true if there are such parameter name == key
Parameters: key (basestring) – Parameter name Returns: True if contains such key
-
get_shape
(key) get shape of the parameter.
Parameters: key (basestring) – parameter name Returns: parameter’s shape Return type: tuple
-
get
(parameter_name) Get parameter by parameter name.
Note: It will always copy the parameter from C++ side. Parameters: parameter_name (basestring) – parameter name Returns: The parameter matrix. Return type: np.ndarray
-
set
(parameter_name, value) Set parameter by parameter name & matrix.
Parameters: - parameter_name (basestring) – parameter name
- value (np.ndarray) – parameter matrix
Returns: Nothing.
-
append_gradient_machine
(gradient_machine) append gradient machine to parameters. This method is used internally in Trainer.train.
Parameters: gradient_machine (api.GradientMachine) – Paddle C++ GradientMachine object. Returns:
-
serialize
(name, f) Parameters: - name –
- f (file) –
Returns:
-
deserialize
(name, f) Parameters: - name –
- f (file) –
Returns:
-
Trainer¶
Module Trainer
-
class
paddle.v2.trainer.
SGD
(cost, parameters, update_equation, extra_layers=None, is_local=True, pserver_spec=None) Simple SGD Trainer. SGD Trainer combines data reader, network topolopy and update_equation together to train/test a neural network.
Parameters: - update_equation (paddle.v2.optimizer.Optimizer) – The optimizer object.
- cost (paddle.v2.config_base.Layer) – Target cost that neural network should be optimized.
- parameters (paddle.v2.parameters.Parameters) – The parameters dictionary.
- extra_layers (paddle.v2.config_base.Layer) – Some layers in the neural network graph are not in the path of cost layer.
-
train
(reader, num_passes=1, event_handler=None, feeding=None) Training method. Will train num_passes of input data.
Parameters: - reader (collections.Iterable) – A reader that reads and yeilds data items. Usually we use a batched reader to do mini-batch training.
- num_passes – The total train passes.
- event_handler ((BaseEvent) => None) – Event handler. A method will be invoked when event occurred.
- feeding (dict|list) – Feeding is a map of neural network input name and array index that reader returns.
Returns:
-
test
(reader, feeding=None) Testing method. Will test input data.
Parameters: - reader (collections.Iterable) – A reader that reads and yeilds data items.
- feeding (dict) – Feeding is a map of neural network input name and array index that reader returns.
Returns:
Event¶
Testing and training events.
There are:
- TestResult
- BeginIteration
- EndIteration
- BeginPass
- EndPass
-
class
paddle.v2.event.
TestResult
(evaluator, cost) Result that trainer.test return.
-
class
paddle.v2.event.
BeginPass
(pass_id) Event On One Pass Training Start.
-
class
paddle.v2.event.
EndPass
(pass_id, evaluator) Event On One Pass Training Complete.
-
class
paddle.v2.event.
BeginIteration
(pass_id, batch_id) Event On One Batch Training Start.
-
class
paddle.v2.event.
EndIteration
(pass_id, batch_id, cost, evaluator) Event On One Batch Training Complete.
Inference¶
-
paddle.v2.
infer
(output_layer, parameters, input, feeding=None, field='value') Infer a neural network by given neural network output and parameters. The user should pass either a batch of input data or reader method.
Example usage for sinlge output_layer:
result = paddle.infer(output_layer=prediction, parameters=parameters, input=SomeData) print result
Example usage for multiple outout_layers and fields:
result = paddle.infer(output_layer=[prediction1, prediction2], parameters=parameters, input=SomeData, field=[id, value]]) print result
Parameters: - output_layer (paddle.v2.config_base.Layer or a list of paddle.v2.config_base.Layer) – output of the neural network that would be inferred
- parameters (paddle.v2.parameters.Parameters) – parameters of the neural network.
- input (collections.Iterable) – input data batch. Should be a python iterable object, and each element is the data batch.
- feeding – Reader dictionary. Default could generate from input value.
- field (str) – The prediction field. It should in [value, id, prob]. value and prob mean return the prediction probabilities, id means return the prediction labels. Default is value. Note that prob only used when output_layer is beam_search or max_id.
Returns: The prediction result. If there are multiple outout_layers and fields, the return order is outout_layer1.field1, outout_layer2.field1, ..., outout_layer1.field2, outout_layer2.field2 ...
Return type: numpy.ndarray