Optimizer¶
Optimizer¶
-
class
paddle.v2.fluid.optimizer.
Optimizer
(global_step=None) Optimizer Base class.
Define the common interface of an optimizer. User should not use this class directly, but need to use one of it’s implementation.
-
create_optimization_pass
(parameters_and_grads, loss, startup_program=None) Add optimization operators to update gradients to variables.
Parameters: - loss – the target that this optimization is for.
- parameters_and_grads – a list of (variable, gradient) pair to update.
Returns: a list of operators that will complete one step of optimization. This will include parameter update ops, global step update ops and any other custom ops required by subclasses to manage their internal state. :param startup_program:
Return type: return_op_list
-
minimize
(loss, startup_program=None, parameter_list=None, no_grad_set=None) Add operations to minimize loss by updating parameter_list.
This method combines interface append_backward_ops() and create_optimization_pass() into one.
-
SGDOptimizer¶
-
class
paddle.v2.fluid.optimizer.
SGDOptimizer
(learning_rate, global_step=None) Simple SGD optimizer without any state.
MomentumOptimizer¶
-
class
paddle.v2.fluid.optimizer.
MomentumOptimizer
(learning_rate, momentum, use_nesterov=False, global_step=None) Simple Momentum optimizer with velocity state
AdagradOptimizer¶
-
class
paddle.v2.fluid.optimizer.
AdagradOptimizer
(learning_rate, epsilon=1e-06, global_step=None) Simple Adagrad optimizer with moment state
AdamOptimizer¶
-
class
paddle.v2.fluid.optimizer.
AdamOptimizer
(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, global_step=None) Implements the Adam Optimizer
AdamaxOptimizer¶
-
class
paddle.v2.fluid.optimizer.
AdamaxOptimizer
(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, global_step=None) Implements the Adamax Optimizer
DecayedAdagradOptimizer¶
-
class
paddle.v2.fluid.optimizer.
DecayedAdagradOptimizer
(learning_rate, decay=0.95, epsilon=1e-06, global_step=None) Simple Decayed Adagrad optimizer with moment state