Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • 合并请求
  • !26163

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板

Fix pow api type error with python side method, merge elementwise_pow and pow. !26163

  • Report abuse
!26163 已合并 8月 11, 2020 由 saxon_zh@saxon_zh 创建
#<User:0x00007f0e667c9748>
  • 概览 36
  • 提交 1
  • 变更 6

Created by: Joejiong

PR types

Function optimization

PR changes

OPs

Describe

  • 合并 elementwise_pow 和 pow,命名为 pow,完全兼容elementwise_pow 和 pow。
  • 修复Power 函数动静态图支持float64<-pow(int64, float64)
  • Power 函数动静态图支持float64<-pow(float64, int64)
  • 兼容直接输入python type(float, int),与 paddle data type(Variable和Tensor)

文档预览:

image

测试代码:

from __future__ import print_function
import paddle
import paddle.tensor as tensor
import paddle.fluid as fluid
from paddle.static import Program, program_guard
import numpy as np
import unittest

DYNAMIC = 1
STATIC = 2


def _run_power(mode, x, y):
    # dynamic mode
    if mode == DYNAMIC:
        paddle.disable_static()
        # y is scalar
        if isinstance(y, (int, float)):
            x_ = paddle.to_tensor(x)
            # print(x_)
            y_ = y
            res = paddle.pow(x_, y_)
            return res.numpy()
        # y is tensor
        else:
            x_ = paddle.to_tensor(x)
            y_ = paddle.to_tensor(y)
            res = paddle.pow(x_, y_)
            return res.numpy()
    # static mode
    elif mode == STATIC:
        paddle.enable_static()
        # y is scalar
        if isinstance(y, (int, float)):
            with program_guard(Program(), Program()):
                x_ = paddle.data(name="x", shape=x.shape, dtype=x.dtype)
                y_ = y
                res = paddle.pow(x_, y_)
                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
                outs = exe.run(feed={'x': x}, fetch_list=[res])
                return outs[0]
        # y is tensor
        else:
            with program_guard(Program(), Program()):
                x_ = paddle.data(name="x", shape=x.shape, dtype=x.dtype)
                y_ = paddle.data(name="y", shape=y.shape, dtype=y.dtype)
                res = paddle.pow(x_, y_)
                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
                outs = exe.run(feed={'x': x, 'y': y}, fetch_list=[res])
                return outs[0]


class TestPowerAPI(unittest.TestCase):
    """TestPowerAPI."""

    def test_power(self):
        """test_power."""
        np.random.seed(7)
        # test 1-d float tensor ** float scalar
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = np.random.rand() * 10
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d float tensor ** int scalar
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = int(np.random.rand() * 10)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        x = (np.random.rand(*dims) * 10).astype(np.int64)
        y = int(np.random.rand() * 10)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d float tensor ** 1-d float tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = (np.random.rand(*dims) * 10).astype(np.float64)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d float tensor ** 1-d int tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = (np.random.rand(*dims) * 10).astype(np.int64)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d int tensor ** 1-d float tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.int64)
        y = (np.random.rand(*dims) * 10).astype(np.float64)
        # print(np.power(x, y))
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d int tensor ** 1-d int tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.int64)
        y = (np.random.rand(*dims) * 10).astype(np.int64)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d int tensor ** 1-d int tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.int32)
        y = (np.random.rand(*dims) * 10).astype(np.int32)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d int tensor ** 1-d int tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float32)
        y = (np.random.rand(*dims) * 10).astype(np.float32)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d int tensor ** 1-d int tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = (np.random.rand(*dims) * 10).astype(np.float32)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d int tensor ** 1-d int tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = (np.random.rand(*dims) * 10).astype(np.int32)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d int tensor ** 1-d int tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float32)
        y = (np.random.rand(*dims) * 10).astype(np.int64)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test broadcast
        dims = (np.random.randint(1, 10), np.random.randint(5, 10),
                np.random.randint(5, 10))
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = (np.random.rand(dims[-1]) * 10).astype(np.float64)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))


class TestPowerError(unittest.TestCase):
    """TestPowerError."""

    def test_errors(self):
        """test_errors."""
        np.random.seed(7)

        # test dynamic computation graph: inputs must be broadcastable
        dims = (np.random.randint(1, 10), np.random.randint(5, 10),
                np.random.randint(5, 10))
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = (np.random.rand(dims[-1] + 1) * 10).astype(np.float64)
        self.assertRaises(fluid.core.EnforceNotMet, _run_power, DYNAMIC, x, y)
        self.assertRaises(fluid.core.EnforceNotMet, _run_power, STATIC, x, y)

        # test dynamic computation graph: inputs must be broadcastable
        dims = (np.random.randint(1, 10), np.random.randint(5, 10),
                np.random.randint(5, 10))
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = (np.random.rand(dims[-1] + 1) * 10).astype(np.int8)
        self.assertRaises(TypeError, paddle.pow, x, y)


if __name__ == '__main__':
    unittest.main()

输出:

image

指派人
分配到
审核者
Request review from
无
里程碑
无
分配里程碑
工时统计
标识: paddlepaddle/Paddle!26163
Source branch: github/fork/Joejiong/pow-fix
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7