Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • 合并请求
  • !23940

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板

Fusion group optimizer !23940

  • Report abuse
!23940 已合并 4月 17, 2020 由 saxon_zh@saxon_zh 创建
#<User:0x00007fedf7690dd8>
  • 概览 5
  • 提交 6
  • 变更 8

Created by: wangchaochaohu

code generator: graph

I0420 10:18:34.893874 66342 fusion_group_pass.cc:56] subgraph: {
    Node(sigmoid_1.tmp_0{32x128}), inputs:{sigmoid}, outputs:{elementwise_mul, elementwise_mul_grad}
    Node(tanh_0.tmp_0{32x128}), inputs:{tanh}, outputs:{elementwise_mul, elementwise_mul_grad}
    Node(tmp_3{32x128}), inputs:{elementwise_mul}, outputs:{elementwise_add, elementwise_add_grad}
    Node(tanh_1.tmp_0{32x128}), inputs:{tanh}, outputs:{elementwise_add, elementwise_add_grad, tanh_grad}
    Node(sigmoid_2.tmp_0{32x128}), inputs:{sigmoid}, outputs:{elementwise_add, elementwise_add_grad}
    Node(assign_0.tmp_0{32x128}), inputs:{assign}, outputs:{elementwise_mul, elementwise_mul_grad}
    Node(sigmoid_0.tmp_0{32x128}), inputs:{sigmoid}, outputs:{elementwise_mul, elementwise_mul_grad}
    Node(tmp_2{32x128}), inputs:{elementwise_mul}, outputs:{elementwise_add, elementwise_add_grad}
    Node(tmp_5@GRAD{32x128}), inputs:{mean_grad}, outputs:{elementwise_add_grad}
  Node(Op(elementwise_add_grad), inputs:{Out@GRAD[tmp_5@GRAD], X[tanh_1.tmp_0], Y[sigmoid_2.tmp_0]}, outputs:{X@GRAD[tanh_1.tmp_0@GRAD], Y@GRAD[sigmoid_2.tmp_0@GRAD]}), inputs:{tmp_5@GRAD, tanh_1.tmp_0, sigmoid_2.tmp_0}, outputs:{tanh_1.tmp_0@GRAD, sigmoid_2.tmp_0@GRAD}.
    Node(tanh_1.tmp_0@GRAD{32x128}), inputs:{elementwise_add_grad}, outputs:{tanh_grad}
    Node(sigmoid_2.tmp_0@GRAD{32x128}), inputs:{elementwise_add_grad}, outputs:{}
  Node(Op(tanh_grad), inputs:{Out[tanh_1.tmp_0], Out@GRAD[tanh_1.tmp_0@GRAD]}, outputs:{X@GRAD[tmp_4@GRAD]}), inputs:{tanh_1.tmp_0, tanh_1.tmp_0@GRAD}, outputs:{tmp_4@GRAD}.
    Node(tmp_4@GRAD{32x128}), inputs:{tanh_grad}, outputs:{elementwise_add_grad}
  Node(Op(elementwise_add_grad), inputs:{Out@GRAD[tmp_4@GRAD], X[tmp_2], Y[tmp_3]}, outputs:{X@GRAD[tmp_2@GRAD], Y@GRAD[tmp_3@GRAD]}), inputs:{tmp_4@GRAD, tmp_2, tmp_3}, outputs:{tmp_2@GRAD, tmp_3@GRAD}.
    Node(tmp_2@GRAD{32x128}), inputs:{elementwise_add_grad}, outputs:{elementwise_mul_grad}
    Node(tmp_3@GRAD{32x128}), inputs:{elementwise_add_grad}, outputs:{elementwise_mul_grad}
  Node(Op(elementwise_mul_grad), inputs:{Out@GRAD[tmp_3@GRAD], X[sigmoid_1.tmp_0], Y[tanh_0.tmp_0]}, outputs:{X@GRAD[sigmoid_1.tmp_0@GRAD], Y@GRAD[tanh_0.tmp_0@GRAD]}), inputs:{tmp_3@GRAD, sigmoid_1.tmp_0, tanh_0.tmp_0}, outputs:{sigmoid_1.tmp_0@GRAD, tanh_0.tmp_0@GRAD}.
  Node(Op(elementwise_mul_grad), inputs:{Out@GRAD[tmp_2@GRAD], X[assign_0.tmp_0], Y[sigmoid_0.tmp_0]}, outputs:{X@GRAD[assign_0.tmp_0@GRAD], Y@GRAD[sigmoid_0.tmp_0@GRAD]}), inputs:{tmp_2@GRAD, assign_0.tmp_0, sigmoid_0.tmp_0}, outputs:{assign_0.tmp_0@GRAD, sigmoid_0.tmp_0@GRAD}.
    Node(sigmoid_1.tmp_0@GRAD{32x128}), inputs:{elementwise_mul_grad}, outputs:{}
    Node(tanh_0.tmp_0@GRAD{32x128}), inputs:{elementwise_mul_grad}, outputs:{}
    Node(assign_0.tmp_0@GRAD{32x128}), inputs:{elementwise_mul_grad}, outputs:{}
    Node(sigmoid_0.tmp_0@GRAD{32x128}), inputs:{elementwise_mul_grad}, outputs:{}
}

code

extern "C" __global__ void FusedElementwise9(int N, const float* __restrict__ arg0, const float* __restrict__ arg1, const float* __restrict__ arg2, const float* __restrict__ arg3, const float* __restrict__ arg4, const float* __restrict__ arg5, const float* __restrict__ arg6, const float* __restrict__ arg7, const float* __restrict__ arg8, float* arg10, float* arg14, float* arg15, float* arg16, float* arg17) {
  for(int idx = blockIdx.x * blockDim.x + threadIdx.x;
      idx < N;
      idx += gridDim.x * blockDim.x) {
    float tmp0 = __ldg(&arg0[idx]);
    float tmp1 = __ldg(&arg1[idx]);
    float tmp3 = __ldg(&arg3[idx]);
    float tmp5 = __ldg(&arg5[idx]);
    float tmp6 = __ldg(&arg6[idx]);
    float tmp8 = __ldg(&arg8[idx]);
    float tmp9 = tmp8;
    float tmp10 = tmp8;
    float tmp11 = tmp9 * (1.0 - tmp3 * tmp3);
    float tmp12 = tmp11;
    float tmp13 = tmp11;
    float tmp14 = tmp13 * tmp1;
    float tmp15 = tmp13 * tmp0;
    float tmp16 = tmp12 * tmp6;
    float tmp17 = tmp12 * tmp5;
    arg10[idx] = tmp10;
    arg14[idx] = tmp14;
    arg15[idx] = tmp15;
    arg16[idx] = tmp16;
    arg17[idx] = tmp17;
  }
}

develop


extern "C" __global__ void FusedElementwise2(int N, float* arg0, float* arg1, float* arg2, float* arg3, float* arg4, float* arg5, float* arg6, float* arg7, float* arg8, float* arg9, float* arg10, float* arg11, float* arg12, float* arg13, float* arg14, float* arg15, float* arg16, float* arg17) {
  for(int idx = blockIdx.x * blockDim.x + threadIdx.x;
      idx < N;
      idx += gridDim.x * blockDim.x) {
    float tmp1 = arg1[idx];
    float tmp3 = arg3[idx];
    float tmp4 = arg4[idx];
    float tmp5 = arg5[idx];
    float tmp6 = arg6[idx];
    float tmp8 = arg8[idx];
    float tmp9 = tmp4;
    float tmp10 = tmp4;
    float tmp11 = tmp9 * (1.0 - tmp1 * tmp1);
    float tmp12 = tmp11;
    float tmp13 = tmp11;
    float tmp16 = tmp13 * tmp5;
    float tmp17 = tmp13 * tmp8;
    float tmp14 = tmp12 * tmp6;
    float tmp15 = tmp12 * tmp3;
    arg9[idx] = tmp9;
    arg10[idx] = tmp10;
    arg11[idx] = tmp11;
    arg12[idx] = tmp12;
    arg13[idx] = tmp13;
    arg14[idx] = tmp14;
    arg15[idx] = tmp15;
    arg16[idx] = tmp16;
    arg17[idx] = tmp17;
  }
}

ResNet50 Memory:(BS=128) without fusion_group

I0403 11:39:16.828281 76940 parallel_executor.cc:481] The Program will be executed on CUDA using ParallelExecutor, 1 cards are used, so 1 programs are executed in parallel.
I0403 11:39:16.888053 76940 graph_pattern_detector.cc:101] ---  detected 33 subgraphs
I0403 11:39:17.092631 76940 graph_pattern_detector.cc:101] ---  detected 33 subgraphs
I0403 11:39:17.181783 76940 graph_pattern_detector.cc:101] ---  detected 16 subgraphs
I0403 11:39:17.198555 76940 graph_pattern_detector.cc:101] ---  detected 16 subgraphs
I0403 11:39:17.279995 76940 build_strategy.cc:376] SeqOnlyAllReduceOps:0, num_trainers:1
I0403 11:39:17.407210 76940 parallel_executor.cc:333] Inplace strategy is enabled, when build_strategy.enable_inplace = True
I0403 11:39:17.442723 76940 parallel_executor.cc:401] Garbage collection strategy is enabled, when FLAGS_eager_delete_tensor_gb = 1
2020-04-03 11:39:17,695-INFO: [Pass 0, train batch 0] 	loss 58.28773, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.9014 sec
2020-04-03 11:39:19,361-INFO: [Pass 0, train batch 10] 	loss 37.40405, acc1 0.00781, acc5 0.01562, lr 0.10000, elapse 0.1647 sec
2020-04-03 11:39:21,045-INFO: [Pass 0, train batch 20] 	loss 35.53636, acc1 0.00000, acc5 0.02344, lr 0.10000, elapse 0.1616 sec
2020-04-03 11:39:22,662-INFO: [Pass 0, train batch 30] 	loss 30.75803, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1630 sec
2020-04-03 11:39:24,269-INFO: [Pass 0, train batch 40] 	loss 22.00988, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1612 sec
2020-04-03 11:39:25,881-INFO: [Pass 0, train batch 50] 	loss 12.28711, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1619 sec
2020-04-03 11:39:27,615-INFO: [Pass 0, train batch 60] 	loss 8.07491, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1659 sec
2020-04-03 11:39:29,239-INFO: [Pass 0, train batch 70] 	loss 7.84996, acc1 0.00781, acc5 0.00781, lr 0.10000, elapse 0.1597 sec
2020-04-03 11:39:30,850-INFO: [Pass 0, train batch 80] 	loss 7.88690, acc1 0.00781, acc5 0.00781, lr 0.10000, elapse 0.1618 sec
2020-04-03 11:39:32,464-INFO: [Pass 0, train batch 90] 	loss 7.37603, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1610 sec
2020-04-03 11:39:34,081-INFO: [Pass 0, train batch 100] 	loss 7.40630, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1616 sec
2020-04-03 11:39:35,704-INFO: [Pass 0, train batch 110] 	loss 8.60868, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1616 sec
2020-04-03 11:39:37,321-INFO: [Pass 0, train batch 120] 	loss 7.49577, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1630 sec
2020-04-03 11:39:38,957-INFO: [Pass 0, train batch 130] 	loss 7.61791, acc1 0.00000, acc5 0.01562, lr 0.10000, elapse 0.1648 sec
2020-04-03 11:39:40,568-INFO: [Pass 0, train batch 140] 	loss 7.55739, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1604 sec
2020-04-03 11:39:42,205-INFO: [Pass 0, train batch 150] 	loss 7.34031, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1631 sec
2020-04-03 11:39:43,821-INFO: [Pass 0, train batch 160] 	loss 7.34924, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1611 sec
2020-04-03 11:39:45,435-INFO: [Pass 0, train batch 170] 	loss 7.53807, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1627 sec
2020-04-03 11:39:47,072-INFO: [Pass 0, train batch 180] 	loss 7.39394, acc1 0.00781, acc5 0.02344, lr 0.10000, elapse 0.1611 sec
2020-04-03 11:39:48,696-INFO: [Pass 0, train batch 190] 	loss 7.38567, acc1 0.00781, acc5 0.00781, lr 0.10000, elapse 0.1639 sec
2020-04-03 11:39:50,317-INFO: [Pass 0, train batch 200] 	loss 8.64147, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1607 sec
2020-04-03 11:39:51,938-INFO: [Pass 0, train batch 210] 	loss 7.43214, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1617 sec
2020-04-03 11:39:53,554-INFO: [Pass 0, train batch 220] 	loss 7.34309, acc1 0.00000, acc5 0.01562, lr 0.10000, elapse 0.1619 sec
2020-04-03 11:39:55,174-INFO: [Pass 0, train batch 230] 	loss 7.40224, acc1 0.00781, acc5 0.01562, lr 0.10000, elapse 0.1711 sec
2020-04-03 11:39:56,786-INFO: [Pass 0, train batch 240] 	loss 7.90558, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1612 sec
2020-04-03 11:39:58,426-INFO: [Pass 0, train batch 250] 	loss 7.40587, acc1 0.00781, acc5 0.00781, lr 0.10000, elapse 0.1619 sec
2020-04-03 11:40:00,059-INFO: [Pass 0, train batch 260] 	loss 7.36620, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1616 sec
2020-04-03 11:40:01,684-INFO: [Pass 0, train batch 270] 	loss 7.76474, acc1 0.00781, acc5 0.00781, lr 0.10000, elapse 0.1630 sec
2020-04-03 11:40:03,296-INFO: [Pass 0, train batch 280] 	loss 7.36287, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1602 sec
2020-04-03 11:40:04,904-INFO: [Pass 0, train batch 290] 	loss 7.39509, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1609 sec
2020-04-03 11:40:06,510-INFO: [Pass 0, train batch 300] 	loss 8.02802, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1605 sec
2020-04-03 11:40:08,196-INFO: [Pass 0, train batch 310] 	loss 7.82140, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1630 sec
2020-04-03 11:40:09,819-INFO: [Pass 0, train batch 320] 	loss 7.41313, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1612 sec
2020-04-03 11:40:11,461-INFO: [Pass 0, train batch 330] 	loss 7.74391, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1667 sec
2020-04-03 11:40:13,089-INFO: [Pass 0, train batch 340] 	loss 7.72739, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1634 sec
2020-04-03 11:40:14,711-INFO: [Pass 0, train batch 350] 	loss 7.33674, acc1 0.01562, acc5 0.01562, lr 0.10000, elapse 0.1613 sec

develop with fusion group:

speed

I0420 07:50:40.972506 108885 fusion_group_pass.cc:36] Detect 32 elementwise fusion groups.
2020-04-20 07:50:41,567-INFO: [Pass 0, train batch 0] 	loss 58.35946, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 8.1403 sec
2020-04-20 07:50:43,376-INFO: [Pass 0, train batch 10] 	loss 41.27401, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1948 sec
2020-04-20 07:50:45,259-INFO: [Pass 0, train batch 20] 	loss 45.37650, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1811 sec
2020-04-20 07:50:47,071-INFO: [Pass 0, train batch 30] 	loss 42.26008, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1727 sec
2020-04-20 07:50:48,845-INFO: [Pass 0, train batch 40] 	loss 27.94326, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1724 sec
2020-04-20 07:50:50,590-INFO: [Pass 0, train batch 50] 	loss 16.90263, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1726 sec
2020-04-20 07:50:52,349-INFO: [Pass 0, train batch 60] 	loss 9.08802, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1772 sec
2020-04-20 07:50:54,191-INFO: [Pass 0, train batch 70] 	loss 7.46220, acc1 0.00781, acc5 0.01562, lr 0.10000, elapse 0.1848 sec
2020-04-20 07:50:56,104-INFO: [Pass 0, train batch 80] 	loss 7.42559, acc1 0.00000, acc5 0.01562, lr 0.10000, elapse 0.1744 sec
2020-04-20 07:50:57,995-INFO: [Pass 0, train batch 90] 	loss 7.34507, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1734 sec
2020-04-20 07:50:59,815-INFO: [Pass 0, train batch 100] 	loss 7.41156, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1815 sec
2020-04-20 07:51:01,643-INFO: [Pass 0, train batch 110] 	loss 7.40986, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1735 sec
2020-04-20 07:51:03,443-INFO: [Pass 0, train batch 120] 	loss 7.85518, acc1 0.00000, acc5 0.02344, lr 0.10000, elapse 0.1727 sec
2020-04-20 07:51:05,287-INFO: [Pass 0, train batch 130] 	loss 7.41322, acc1 0.01562, acc5 0.01562, lr 0.10000, elapse 0.1751 sec
2020-04-20 07:51:07,112-INFO: [Pass 0, train batch 140] 	loss 7.39413, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.2064 sec
2020-04-20 07:51:08,908-INFO: [Pass 0, train batch 150] 	loss 7.34854, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1745 sec
2020-04-20 07:51:10,649-INFO: [Pass 0, train batch 160] 	loss 7.37619, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1737 sec
2020-04-20 07:51:12,389-INFO: [Pass 0, train batch 170] 	loss 7.36869, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1736 sec
2020-04-20 07:51:14,230-INFO: [Pass 0, train batch 180] 	loss 7.66026, acc1 0.01562, acc5 0.02344, lr 0.10000, elapse 0.1809 sec
2020-04-20 07:51:16,205-INFO: [Pass 0, train batch 190] 	loss 7.76989, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.2118 sec
2020-04-20 07:51:18,048-INFO: [Pass 0, train batch 200] 	loss 7.63018, acc1 0.00781, acc5 0.00781, lr 0.10000, elapse 0.1853 sec
2020-04-20 07:51:19,829-INFO: [Pass 0, train batch 210] 	loss 7.36925, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1708 sec
2020-04-20 07:51:21,713-INFO: [Pass 0, train batch 220] 	loss 7.35503, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1850 sec
2020-04-20 07:51:23,582-INFO: [Pass 0, train batch 230] 	loss 7.47642, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.2238 sec
2020-04-20 07:51:25,521-INFO: [Pass 0, train batch 240] 	loss 7.36822, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1909 sec
2020-04-20 07:51:27,313-INFO: [Pass 0, train batch 250] 	loss 7.36916, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1748 sec
2020-04-20 07:51:29,134-INFO: [Pass 0, train batch 260] 	loss 7.66580, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1734 sec
2020-04-20 07:51:30,877-INFO: [Pass 0, train batch 270] 	loss 7.35389, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1744 sec

this pr with fusion group

speed:

I0420 07:37:51.626042 102071 graph_pattern_detector.cc:101] ---  detected 33 subgraphs
I0420 07:37:51.824518 102071 graph_pattern_detector.cc:101] ---  detected 33 subgraphs
I0420 07:37:59.413408 102071 fusion_group_pass.cc:36] Detect 32 elementwise fusion groups.
2020-04-20 07:38:00,071-INFO: [Pass 0, train batch 0] 	loss 57.01205, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 8.5414 sec
2020-04-20 07:38:01,711-INFO: [Pass 0, train batch 10] 	loss 22.20854, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1618 sec
2020-04-20 07:38:03,335-INFO: [Pass 0, train batch 20] 	loss 19.15162, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1574 sec
2020-04-20 07:38:05,019-INFO: [Pass 0, train batch 30] 	loss 13.94458, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1713 sec
2020-04-20 07:38:06,685-INFO: [Pass 0, train batch 40] 	loss 10.60628, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1652 sec
2020-04-20 07:38:08,333-INFO: [Pass 0, train batch 50] 	loss 9.11628, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1645 sec
2020-04-20 07:38:09,945-INFO: [Pass 0, train batch 60] 	loss 7.43096, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1627 sec
2020-04-20 07:38:11,536-INFO: [Pass 0, train batch 70] 	loss 7.36789, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1575 sec
2020-04-20 07:38:13,124-INFO: [Pass 0, train batch 80] 	loss 7.35075, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1582 sec
2020-04-20 07:38:14,728-INFO: [Pass 0, train batch 90] 	loss 7.36890, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1604 sec
2020-04-20 07:38:16,361-INFO: [Pass 0, train batch 100] 	loss 7.79940, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1691 sec
2020-04-20 07:38:17,966-INFO: [Pass 0, train batch 110] 	loss 7.52226, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1568 sec
2020-04-20 07:38:19,578-INFO: [Pass 0, train batch 120] 	loss 7.58882, acc1 0.00000, acc5 0.01562, lr 0.10000, elapse 0.1596 sec
2020-04-20 07:38:21,168-INFO: [Pass 0, train batch 130] 	loss 7.56549, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1570 sec
2020-04-20 07:38:22,782-INFO: [Pass 0, train batch 140] 	loss 7.39170, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1597 sec
2020-04-20 07:38:24,377-INFO: [Pass 0, train batch 150] 	loss 7.35504, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1580 sec
2020-04-20 07:38:25,978-INFO: [Pass 0, train batch 160] 	loss 7.35626, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1593 sec
2020-04-20 07:38:27,590-INFO: [Pass 0, train batch 170] 	loss 7.35559, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1613 sec
2020-04-20 07:38:29,176-INFO: [Pass 0, train batch 180] 	loss 7.35849, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1579 sec
2020-04-20 07:38:30,805-INFO: [Pass 0, train batch 190] 	loss 7.45062, acc1 0.00781, acc5 0.00781, lr 0.10000, elapse 0.1638 sec
2020-04-20 07:38:32,392-INFO: [Pass 0, train batch 200] 	loss 7.45199, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1574 sec
2020-04-20 07:38:33,985-INFO: [Pass 0, train batch 210] 	loss 7.35009, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1587 sec
2020-04-20 07:38:35,579-INFO: [Pass 0, train batch 220] 	loss 7.35454, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1589 sec
2020-04-20 07:38:37,160-INFO: [Pass 0, train batch 230] 	loss 7.35036, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1579 sec
2020-04-20 07:38:38,813-INFO: [Pass 0, train batch 240] 	loss 7.66524, acc1 0.00000, acc5 0.00781, lr 0.10000, elapse 0.1589 sec
2020-04-20 07:38:40,396-INFO: [Pass 0, train batch 250] 	loss 7.47834, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1583 sec
2020-04-20 07:38:41,992-INFO: [Pass 0, train batch 260] 	loss 7.36098, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1587 sec
2020-04-20 07:38:43,582-INFO: [Pass 0, train batch 270] 	loss 7.46548, acc1 0.00000, acc5 0.00000, lr 0.10000, elapse 0.1582 sec
2020-04-20 07:38:45,166-INFO: [Pass 0, train batch 280]
指派人
分配到
审核者
Request review from
无
里程碑
无
分配里程碑
工时统计
标识: paddlepaddle/Paddle!23940
Source branch: github/fork/wangchaochaohu/fusion_group_optimizer
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7