Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • 合并请求
  • !21520

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板

support gradient accumulate in dygraph !21520

  • Report abuse
!21520 开放中 12月 03, 2019 由 saxon_zh@saxon_zh 创建
#<User:0x00007f7e2201fde0>
  • 概览 5
  • 提交 10
  • 变更 6

Created by: JepsonWong

Now paddle don't support gradient accumulate in dygraph. User may not have much gpu memory and cannot implement training with large batch data, to achieve training with large batch samples, we should support gradient accumulate in dygraph.

  • User can use mini-batch data to backward multiple times to achieve the effect of large batch data backward.

sample code:

model.clear_gradient() # Reset gradients tensors
for i, (inputs, labels) in enumerate(training_set):
    predictions = model(inputs) # Forward pass
    loss = loss_function(predictions, labels) # Compute loss function
    loss = loss / accumulation_steps # Normalize our loss (if averaged)
    loss.backward() # Backward pass
    if (i+1) % accumulation_steps == 0: # Wait for several backward steps
        optimizer.minimize() # Now we can do an optimizer step
        model.clear_gradient() # Reset gradients tensors

transformer mode test:

  1. batch_size = 32, don't use gradient accumulate. pass : 0 finished, validation avg loss: [4.2705855] pass : 1 finished, validation avg loss: [3.3497431] pass : 2 finished, validation avg loss: [3.0039177] pass : 3 finished, validation avg loss: [2.88103] pass : 4 finished, validation avg loss: [2.8394444] pass : 5 finished, validation avg loss: [2.8676476] pass : 6 finished, validation avg loss: [2.9263651] pass : 7 finished, validation avg loss: [2.9343238] pass : 8 finished, validation avg loss: [2.9415674] pass : 9 finished, validation avg loss: [2.8939047] pass : 10 finished, validation avg loss: [2.888354] pass : 11 finished, validation avg loss: [2.8944314] pass : 12 finished, validation avg loss: [2.942391] pass : 13 finished, validation avg loss: [2.9244676] pass : 14 finished, validation avg loss: [2.9677844] pass : 15 finished, validation avg loss: [2.9790475] pass : 16 finished, validation avg loss: [3.0021255] pass : 17 finished, validation avg loss: [3.0062253] pass : 18 finished, validation avg loss: [3.0180252] pass : 19 finished, validation avg loss: [3.0087602]

  2. batch_size=16, use gradient accumulate, accumulation_steps = 2. pass : 0 finished, validation avg loss: [4.279442] pass : 1 finished, validation avg loss: [3.352506] pass : 2 finished, validation avg loss: [2.9923875] pass : 3 finished, validation avg loss: [2.8756173] pass : 4 finished, validation avg loss: [2.8708618] pass : 5 finished, validation avg loss: [2.892614] pass : 6 finished, validation avg loss: [2.8977745] pass : 7 finished, validation avg loss: [2.9026713] pass : 8 finished, validation avg loss: [2.9281192] pass : 9 finished, validation avg loss: [2.895417] pass : 10 finished, validation avg loss: [2.9202948] pass : 11 finished, validation avg loss: [2.9038296] pass : 12 finished, validation avg loss: [2.9103203] pass : 13 finished, validation avg loss: [2.9175427] pass : 14 finished, validation avg loss: [2.9222167] pass : 15 finished, validation avg loss: [2.954068] pass : 16 finished, validation avg loss: [3.0088449] pass : 17 finished, validation avg loss: [2.9913201] pass : 18 finished, validation avg loss: [2.9951591] pass : 19 finished, validation avg loss: [3.008231]

指派人
分配到
审核者
Request review from
无
里程碑
无
分配里程碑
工时统计
标识: paddlepaddle/Paddle!21520
Source branch: github/fork/JepsonWong/grad_accumulate
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7