Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • 合并请求
  • !10291

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
接近 2 年 前同步成功

通知 2323
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板

[DO NOT MERGE] MKLDNN layouts !10291

  • Report abuse
!10291 已关闭 4月 28, 2018 由 saxon_zh@saxon_zh 创建
#<User:0x00007f2b6450b720>
  • 概览 25
  • 提交 5
  • 变更 16

Created by: pzelazko-intel

DO NOT MERGE IT

Please take a look at MKLDNN layout Proof of Concept and assess if we can stay with this design. This code is not finished - there are debug VLOG prints, some parts are missing and the code needs cleanup.

We need MKLDNN layouts for MKLDNN kernels to be performed efficiently - especially for convolution and fully-connected OPs.

In #8305 (closed) it was recommended to create MKLDNNLoDTensor class deriving from LoDTensor. But that approach was causing too many problems - in many places Tensor class is used explicitly and I would need to differentiate between LoDTensor and MKLDNNLoDTensor.

I came up with a different approach - I've added Tensor::ExtendedData interface and a pointer to this interface in Tensor class. It is a placeholder for additional data. I use it for MKLDNN layout case - mkldnn::memory::format and mkldnn::engine are held in MKLDNNTensorData, which derives from Tensor::ExtendedData. If Tensor layout is set to kMKLDNN, then I can treat this tensor as holding data in MKLDNN format layout. To make use of such a tensor, I've created decorator classes MKLDNNTensor and MutableMKLDNNTensor. The data is kept still in Placeholder within Tensor.

Reorders to MKLDNN format happen within convolution and fully-connected, because:

  • For these two OPs MKLDNN library can decide which layout is best based on input parameters like the size of the input, stride, padding etc.
  • Other MKLDNN OPs don't offer significant performance boost on MKLDNN layouts

When the next OP expected kernel is not a MKLDNN one, then we transform tensor to NCHW layout.

指派人
分配到
审核者
Request review from
无
里程碑
无
分配里程碑
工时统计
标识: paddlepaddle/Paddle!10291
Source branch: github/fork/pzelazko-intel/mkldnn-layout
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7