Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #982

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 12月 21, 2016 by saxon_zh@saxon_zhGuest

本地predict错误

Created by: sjtuwy

错误信息如下:

+ model=./gender_sparse_model/pass-00019
+ config=./trainer_config_gender_sparse.cluster.py
+ predict_data=./gender_sparse_data/20161112
+ python predict.py -n ./trainer_config_gender_sparse.cluster.py -w ./gender_sparse_model/pass-00019 -i ./gender_sparse_data/20161112
I1221 17:59:07.502112 34343 Util.cpp:158] commandline:  --use_gpu=0 
I1221 17:59:07.502246 34343 Util.cpp:132] Calling runInitFunctions
I1221 17:59:07.502578 34343 Util.cpp:146] Call runInitFunctions done.
Traceback (most recent call last):
  File "<string>", line 13, in <module>
NameError: name 'GLOG_logtostderr' is not defined
[INFO 2016-12-21 17:59:07,525 networks.py:1466] The input order is [input_fea]
[INFO 2016-12-21 17:59:07,525 networks.py:1472] The output order is [__fc_layer_6__]
I1221 17:59:12.760416 34343 GradientMachine.cpp:124] Loading parameters from ./gender_sparse_model/pass-00019
Traceback (most recent call last):
  File "predict.py", line 107, in <module>
    main()
  File "predict.py", line 104, in main
    predict.predict_onebyone(data)
  File "predict.py", line 77, in predict_onebyone
    input = self.converter.convert([[fea]])
  File "/home/disk0/it/paddle/paddle_internal_release_tools/idl/paddle/output/python27-gcc482/lib/python2.7/site-packages/py_paddle/dataprovider_converter.py", line 152, in convert
    scanner.finish_scan(argument)
  File "/home/disk0/it/paddle/paddle_internal_release_tools/idl/paddle/output/python27-gcc482/lib/python2.7/site-packages/py_paddle/dataprovider_converter.py", line 78, in finish_scan
    m.sparseCopyFrom(self.__rows__, self.__cols__, self.__value__)
  File "/home/disk0/it/paddle/paddle_internal_release_tools/idl/paddle/output/python27-gcc482/lib/python2.7/site-packages/py_paddle/swig_paddle.py", line 680, in sparseCopyFrom
    return _swig_paddle.Matrix_sparseCopyFrom(self, *args)
NotImplementedError: Wrong number or type of arguments for overloaded function 'Matrix_sparseCopyFrom'.
  Possible C/C++ prototypes are:
    Matrix::sparseCopyFrom(std::vector< int,std::allocator< int > > const &,std::vector< int,std::allocator< int > > const &,std::vector< float,std::allocator< float > > const &)
    Matrix::sparseCopyFrom(std::vector< int,std::allocator< int > > const &,std::vector< int,std::allocator< int > > const &)

麻烦协助排查下原因,谢谢。 附: predict.sh:

model=./gender_sparse_model/pass-00019
config=./trainer_config_gender_sparse.cluster.py
predict_data=./gender_sparse_data/20161112
python predict.py \
     -n $config\
     -w $model \
     -i $predict_data \
     > ./gender_sparse_data/20161112.res

predict.py:

import os
import numpy as np
from optparse import OptionParser
from py_paddle import swig_paddle, DataProviderConverter
from paddle.trainer.config_parser import parse_config
from paddle.trainer.PyDataProvider2 import sparse_binary_vector

"""
Usage: run following command to show help message.
  python predict.py -h
"""

fea_map = {}
for line in open('./sparse_fea_entropy.20161112.dict', 'r'):
    l_s = line.rstrip('\n\r').split('\t')
    fea_map[int(l_s[0])] = int(l_s[1])

class ModelPrediction():
    def __init__(self, train_conf, model_dir=None):
        """
        train_conf: trainer configure.
        dict_file: word dictionary file name.
        model_dir: directory of model.
        """
        self.train_conf = train_conf
        self.model_dir = model_dir
        conf = parse_config(train_conf, "is_predict=1")
        self.network = swig_paddle.GradientMachine.createFromConfigProto(conf.model_config)
        self.network.loadParameters(self.model_dir)
        slots = [sparse_binary_vector(5000001)]
        self.converter = DataProviderConverter(slots)


    def predict_onebyone(self, data_file):
        import sys
        """
        The main function for loading data.
        Load the batch, iterate all the images and labels in this batch.
        file_name: the batch file name.
        """
        if data_file is None:
            f = sys.stdin
        else:
            f = open(data_file)
        while True:
            line = f.readline()
            if len(line) == 0:
                break
            try:
                l_s = line.rstrip('\n').split()
                user = l_s[0]
                target = l_s[1]
                feature = l_s[2:]
            except:
                print >> sys.stderr, line,
                continue
            try:
                fea = [int(i.split(':')[0]) for i in feature]
            except Exception, e:
                print >> sys.stderr, "fetch data failed",e
                continue

            input = self.converter.convert([[fea]])
            output = self.network.forwardTest(input)

            prediction = output[0]["value"][0][0]

            print_str = user+"\t"+target+"\t"+str(prediction)
            print print_str

def option_parser():
    usage = "python predict.py -n config -w model_dir -i input_file "
    parser = OptionParser(usage="usage: %s [options]" % usage)
    parser.add_option("-n", "--tconf", action="store",
                      dest="train_conf", help="network config")
    parser.add_option("-i", "--data", action="store",
                      dest="data", help="data file to predict")
    parser.add_option("-w", "--model", action="store",
                      dest="model_path", default=None,
                      help="model path")
    return parser.parse_args()

def main():
    options, args = option_parser()
    train_conf = options.train_conf
    data = options.data
    model_path = options.model_path
    swig_paddle.initPaddle("--use_gpu=0")
    predict = ModelPrediction(train_conf, model_path)
    predict.predict_onebyone(data)

trainer_config_gender_sparse.cluster.py

from paddle.trainer_config_helpers import *
import datetime

cluster_config(
        fs_name = "xxx",
        fs_ugi = "xxx",
        output_path="xxx")),
        train_data_path="xxx",
        test_data_path="xxx",
        use_remote_sparse=True,
)

is_predict = get_config_arg("is_predict", bool, False)
input_dim = 5000001
num_classes = 2

####################Data Configuration ##################
if not is_predict:
  data_dir='data/'
  define_py_data_sources2(train_list='train.list',
                          test_list=None,
                          module='ei_fea_provider_gender_sparse',
                          obj='processData')
settings(
    batch_size = 500,
    learning_method = AdaGradOptimizer(),
)
input = data_layer(name='input_fea', size=input_dim)
label = data_layer(name="label", size=num_classes)
#emb = embedding_layer(input=input, size=256, param_attr=ParamAttr(sparse_update=True))
#emb_sum = pooling_layer(input=emb, pooling_type=SumPooling())

hidden = fc_layer(input=input, size=256, act=ReluActivation(), param_attr=ParamAttr(sparse_update=True,l1_rate=0.1))
hidden = fc_layer(input=hidden, size=256, act=ReluActivation())
hidden = fc_layer(input=hidden, size=128, act=ReluActivation())
hidden = fc_layer(input=hidden, size=64, act=ReluActivation())
hidden = fc_layer(input=hidden, size=32, act=ReluActivation())
hidden = fc_layer(input=hidden, size=16, act=ReluActivation())
if not is_predict:
    prediction = fc_layer(input=hidden, size=num_classes, act=SoftmaxActivation())
    outputs(classification_cost(input=prediction,
                                label=label,
                                evaluator=[precision_recall_evaluator, classification_error_evaluator, auc_evaluator]))

    for i in range(num_classes):
        precision_recall_evaluator(name="PreRec of label [{0}]".format(i), input=prediction, label=label, positive_label=i)
else:
    prediction = fc_layer(input=hidden, size=num_classes, act=SoftmaxActivation())
    outputs([prediction])

样本例子:

user_id label0 962870217988607:3 985761982809793:3 838052250556224:2 3096226547944201:11
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#982
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7