Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #9466

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 3月 29, 2018 by saxon_zh@saxon_zhGuest

Discuss possible fluid imperative programming paradigms

Created by: cs2be

Abhinav, Helin and I have discuss possibilities for implement imperative paradigms. Here are two variants of fit a line example, one implemented using full imperative, the other using a variant of the current API. This proposal will need some discussion.

Note: These examples showcase possible python API/operators that may not currently exist in Paddle.

Fit a line with Imperative

In this scenario, the fluid executor will run after the block exits. Note this will require some methods to change (fluid.optimizer), which may affect backwards compatibility.

def train(place):
    with fluid.Program(place):
        batch_reader = fluid.layers.batch_reader(
            filename = './flowers.recordio', type='recordio',
            batch_size=100, shape=[[13], [1]], dtype=['float32', 'float32'])

        with fluid.While(step=100):
            x, y = fluid.layers.next_batch(batch_reader)
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_cost = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost)

            #fluid.Print(avg_cost)

            # This example shows how to fetch variables from within the scope
            # during execution of the ProgramDesc.  A new fetch operator can
            # be added to the ProgramDesc.  Its job will be to send the data to
            # the python host (using sockets or RPC), and wait for the host to
            # complete the request.  On the python side, the user can implement
            # some logic (like log the data, or send to database, ect).
            fluid.fetch([avg_cost], lambda ac: print(ac))


if __name__ == '__main__':
    train(fluid.CPUPlace)

Fit a line without full imperative, but modified fluid api.

def train(place):
    with fluid.program(place):
        batch_reader = fluid.layers.batch_reader(
            filename = './flowers.recordio', type='recordio',
            batch_size=100, shape=[[13], [1]], dtype=['float32', 'float32'])

        x, y = fluid.layers.next_batch(batch_reader)
        y_predict = fluid.layers.fc(input=x, size=1, act=None)
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)

        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
        sgd_optimizer.minimize(avg_cost)

        fluid.initialize_variables()

        for pass_id in range(100):
            avg_loss_value, = fluid.run(place=fluid.CPUPlace(), fetch_list=[avg_cost])
            print(avg_loss_value)


if __name__ == '__main__':
    train(fluid.CPUPlace)
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#9466
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7