Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #8400

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 2月 12, 2018 by saxon_zh@saxon_zhGuest

image_classification在centos下,gcc是4.4.7的时候出现SIGSEGV的错误,请帮忙看看,thanks

Created by: xymyeah

I0212 12:28:50.517459 1322 Util.cpp:166] commandline: --num_passes=1 --ports_num_for_sparse=1 --use_gpu=0 --trainer_id=0 --pservers=10.10.10.10 --trainer_count=1 --nu m_gradient_servers=1 --ports_num=1 --port=30002 [INFO 2018-02-12 12:28:50,523 layers.py:2714] output for conv_0: c = 64, h = 32, w = 32, size = 65536 [INFO 2018-02-12 12:28:50,524 layers.py:3282] output for batch_norm_0: c = 64, h = 32, w = 32, size = 65536 [INFO 2018-02-12 12:28:50,525 layers.py:2714] output for conv_1: c = 64, h = 32, w = 32, size = 65536 [INFO 2018-02-12 12:28:50,526 layers.py:3282] output for batch_norm_1: c = 64, h = 32, w = 32, size = 65536 [INFO 2018-02-12 12:28:50,527 layers.py:2856] output for pool_0: c = 64, h = 16, w = 16, size = 16384 [INFO 2018-02-12 12:28:50,528 layers.py:2714] output for conv_2: c = 128, h = 16, w = 16, size = 32768 [INFO 2018-02-12 12:28:50,529 layers.py:3282] output for batch_norm_2: c = 128, h = 16, w = 16, size = 32768 [INFO 2018-02-12 12:28:50,530 layers.py:2714] output for conv_3: c = 128, h = 16, w = 16, size = 32768 [INFO 2018-02-12 12:28:50,531 layers.py:3282] output for batch_norm_3: c = 128, h = 16, w = 16, size = 32768 [INFO 2018-02-12 12:28:50,532 layers.py:2856] output for pool_1: c = 128, h = 8, w = 8, size = 8192 [INFO 2018-02-12 12:28:50,533 layers.py:2714] output for conv_4: c = 256, h = 8, w = 8, size = 16384 [INFO 2018-02-12 12:28:50,534 layers.py:3282] output for batch_norm_4: c = 256, h = 8, w = 8, size = 16384 [INFO 2018-02-12 12:28:50,535 layers.py:2714] output for conv_5: c = 256, h = 8, w = 8, size = 16384 [INFO 2018-02-12 12:28:50,536 layers.py:3282] output for batch_norm_5: c = 256, h = 8, w = 8, size = 16384 [INFO 2018-02-12 12:28:50,538 layers.py:2714] output for conv_6: c = 256, h = 8, w = 8, size = 16384 [INFO 2018-02-12 12:28:50,539 layers.py:3282] output for batch_norm_6: c = 256, h = 8, w = 8, size = 16384 [INFO 2018-02-12 12:28:50,539 layers.py:2856] output for pool_2: c = 256, h = 4, w = 4, size = 4096 [INFO 2018-02-12 12:28:50,540 layers.py:2714] output for conv_7: c = 512, h = 4, w = 4, size = 8192 [INFO 2018-02-12 12:28:50,541 layers.py:3282] output for batch_norm_7: c = 512, h = 4, w = 4, size = 8192 [INFO 2018-02-12 12:28:50,542 layers.py:2714] output for conv_8: c = 512, h = 4, w = 4, size = 8192 [INFO 2018-02-12 12:28:50,543 layers.py:3282] output for batch_norm_8: c = 512, h = 4, w = 4, size = 8192 [INFO 2018-02-12 12:28:50,544 layers.py:2714] output for conv_9: c = 512, h = 4, w = 4, size = 8192 [INFO 2018-02-12 12:28:50,545 layers.py:3282] output for batch_norm_9: c = 512, h = 4, w = 4, size = 8192 [INFO 2018-02-12 12:28:50,546 layers.py:2856] output for pool_3: c = 512, h = 2, w = 2, size = 2048 [INFO 2018-02-12 12:28:50,547 layers.py:2714] output for conv_10: c = 512, h = 2, w = 2, size = 2048 [INFO 2018-02-12 12:28:50,548 layers.py:3282] output for batch_norm_10: c = 512, h = 2, w = 2, size = 2048 [INFO 2018-02-12 12:28:50,549 layers.py:2714] output for conv_11: c = 512, h = 2, w = 2, size = 2048 [INFO 2018-02-12 12:28:50,550 layers.py:3282] output for batch_norm_11: c = 512, h = 2, w = 2, size = 2048 [INFO 2018-02-12 12:28:50,551 layers.py:2714] output for conv_12: c = 512, h = 2, w = 2, size = 2048 [INFO 2018-02-12 12:28:50,552 layers.py:3282] output for batch_norm_12: c = 512, h = 2, w = 2, size = 2048 [INFO 2018-02-12 12:28:50,553 layers.py:2856] output for pool_4: c = 512, h = 1, w = 1, size = 512 I0212 12:28:50.699533 1322 GradientMachine.cpp:94] Initing parameters.. I0212 12:28:51.627924 1322 GradientMachine.cpp:101] Init parameters done. I0212 12:28:51.642782 1322 ParameterClient2.cpp:113] pserver 0 10.90.245.28:30002 I0212 12:28:53.938444 1395 ParameterClient2.cpp:113] pserver 0 10.90.245.28:30002 Thread [140664660924160] Forwarding conv_0,

* Aborted at 1518409737 (unix time) try "date -d @1518409737" if you are using GNU date *

PC: @ 0x0 (unknown)

* SIGSEGV (@0x0) received by PID 1322 (TID 0x7fef0b259700) from PID 0; stack trace: *

@ 0x7fef0a859500 (unknown) @ 0x7feeb5cf4d6a __kmp_register_root @ 0x7feeb5cff11e __kmp_middle_initialize @ 0x7feeb5ce8dae __kmp_api_omp_get_num_procs @ 0x7fee825ea2ae mkl_serv_get_num_stripes @ 0x7fee8249f234 mkl_blas_sgemm_host @ 0x7fee8246fa3b mkl_blas_sgemm @ 0x7fee823f13c3 SGEMM @ 0x7fee823b4881 cblas_sgemm @ 0x7feeb67f7279 paddle::gemm<>() @ 0x7feeb66baec3 paddle::GemmConvFunction<>::calc() @ 0x7feeb65adcdf paddle::ExpandConvLayer::forward() @ 0x7feeb65256cd paddle::NeuralNetwork::forward() @ 0x7feeb6526323 paddle::GradientMachine::forwardBackward() @ 0x7feeb6870864 GradientMachine::forwardBackward() @ 0x7feeb64be9c9 _wrap_GradientMachine_forwardBackward @ 0x7fef0ab5ebac PyEval_EvalFrameEx @ 0x7fef0ab605ee PyEval_EvalCodeEx @ 0x7fef0ab5ec27 PyEval_EvalFrameEx @ 0x7fef0ab605ee PyEval_EvalCodeEx @ 0x7fef0ab5ec27 PyEval_EvalFrameEx @ 0x7fef0ab605ee PyEval_EvalCodeEx @ 0x7fef0ab5ec27 PyEval_EvalFrameEx @ 0x7fef0ab605ee PyEval_EvalCodeEx @ 0x7fef0ab5ec27 PyEval_EvalFrameEx @ 0x7fef0ab605ee PyEval_EvalCodeEx @ 0x7fef0ab60702 PyEval_EvalCode @ 0x7fef0ab80450 PyRun_FileExFlags @ 0x7fef0ab8062f PyRun_SimpleFileExFlags @ 0x7fef0ab95f24 Py_Main @ 0x7fef09e4acdd __libc_start_main Aborted (core dumped) stdbuf -oL sh -c "${ENTRY_CMD}"
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#8400
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7