Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #6876

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 12月 22, 2017 by saxon_zh@saxon_zhGuest

Make a clear plan to support Transformer on Fluid.

Created by: lcy-seso

We are going to support popular NMT models on Fluid, including but not limited to RNN search, ConvS2S, and Transformer.

I think the first important thing for us is to understand and figure out the problems.

We choose Google' Transformer as our starting point. Here I list some questions should be answered:

A tensor2tensor implementation: https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py

  • About the Transformer:

    • motivation: What is the problem proposed to solve.
    • how the problem is solved.
    • model architecture:
      • Are there any challenges or functional requirements for a DL framework to implement the transformer architecture?
      • Are there any tricks or key points require our framework to support a function we have not considered yet?
      • Are there any operators we have not implemented yet?
  • About Fluid (This part is relatively open currently)

    • How encoder-decoder architecture is implemented in Fluid, run it and follow its execution/codes, do you have any question and problem about it (it is ok just from the perspective of a user)
    • RNN and dynamic RNN. The transformer does not need any recurrent layer and CNN layer. But how Fluid process sequence is still crucial.
    • propose your questions about Fluid, we will collect them.

At the end of this step, we will share our notes with everyone, both about Transformer and Fluid, we can try to make it part of the document. all of us should:

  1. have an overview picture of the architecture of Transformer; (from top to bottom, not the reverse.)
  2. carry out a clear plan about how we are going to implement Transformer:
    • any special requirements for Fluid?
    • what mechanisms of fluid are we going to make use of? for example: while loop, dynamic RNN, or any other things?
  3. a checklist of operators needed: The list can be directly changed to an action list.
    • what do we already have?
    • what has not been implemented yet?

Related issue: https://github.com/PaddlePaddle/Paddle/issues/6821

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#6876
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7