Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #6821

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 12月 21, 2017 by saxon_zh@saxon_zhGuest

Neural Machine Translation Models on Fluid.

Created by: lcy-seso

In NLP field, Neural Machine Translation (NMT for short) is one of the most important tasks to evaluate how near our models and techniques approach the ultimate goal: understanding natural language. Besides, NMT models are always among the most complicated models in the NLP field. They require a deep learning framework should be both highly flexibile and computation efficient.

Making popular NMT models being well supported help us to speed up the process that our framework is capable of solving practical problems.

Here, I first list some candidate models advised by our partners. At the very beginning, we should make sure our design has a native support for these models. (Later, I will create a project to manage all the functional requirements.)

  1. The RNN search model. This is a baseline model that MUST be well supported.
  2. ConvS2S . This is also a very popular and basic model that is expected to be well supported. The key point of this model is through highly parallel computing to speed up the training process.
    • https://github.com/facebookresearch/fairseq
  3. Transformer
    • Our design should support the Transformer model naturally and easily.
    • https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py

Other models, we should think about:

  1. Minimum Risk Training for Neural Machine Translation
    • Decoding during training helps to improve the performance of NMT. We should think about this.
  2. Dual learning for NMT
    • This model is time-consuming, but we'd better think about its training process.

About decoding:

  • Think about Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search besides the standard beam search.

Finally, I hope to summarize up:

  • The top priority gives to RNN search model and ConvS2S.
  • Guarantee our design can support the Transformer.
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#6821
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7