Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #5899

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 11月 24, 2017 by saxon_zh@saxon_zhGuest

A question about how PaddlePaddle implements the L2 regularization.

Created by: lcy-seso

As far as I understand, after one forward-backward computation, when updating the learnable weights, the order is:

  1. Perform gradients clipping (if needed, including hard clipping, soft clipping, clipping by norm, and so on)
  2. Apply regularization (if needed). The regularization terms express our prior beliefs about the solution.
  3. Calculate the adaptive gradients according to different formula of the different optimization algorithms, such as Adagrad, Rmsprop, Adadelta, Adam, Adammax, and so on.

This is because the cost is usually made up of two parts:

  1. The error measure from a particular loss function.
  2. The penalty terms to avoid overfitting (the regularization term).

As a result, the gradient of the loss with respect to a learnable parameter is also made up of two parts: (1) the gradient from the loss function; (2) the loss from the regularization term.

When applying the adaptive gradient algorithms, we should sum up the gradients from the regularization term and the gradients from the loss function first.

In PaddlePaddle's codes, here I take the Adagrad for example, regularization is applied after performing the adaptive gradient algorithm, which affects algorithm like Adam when estimating the momentum.

https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/math/TrainingAlgorithmOp.cu#L80

void adagradApply(BaseMatrix& value,
                  BaseMatrix& grad,
                  BaseMatrix& mom,
                  BaseMatrix& accum_buffer,
                  BaseMatrix& accum,
                  BaseMatrix& lr,
                  real epsilon,
                  real learningRate,
                  real momentum,
                  real decayRate) {
  auto expr1 = accum.lazyAssign(accum + grad.square());
  auto expr2 =
      lr.lazyAssign((accum_buffer + accum + epsilon).sqrt().reciprocal());
  auto expr3 = mom.lazyAssign(mom * momentum -
                              learningRate * lr * (grad + value * decayRate));
  auto expr4 = value.lazyAssign(value + mom);

  AssignEvaluate(expr1, expr2, expr3, expr4);
}

A very interesting thing is, decoupling weight decay and the optimization steps are proposed by a recent paper: Fixing Weight Decay Regularization in Adam, and is claimed to have a better learning performance on CIFAR-10 and ImageNet32x32. The green color one is the way PaddlePaddle uses and the variant proposed by the paper.

image

@emailweixu I am very interested in (and curious about) the way PaddlePaddle applies the L2 regularization. I am not very sure whether my understanding about PaddlePaddle is right and why we implement the L2 regularization in this way before. Thank you for the help.

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#5899
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7