Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #5891

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 11月 24, 2017 by saxon_zh@saxon_zhGuest

NotImplementedError: Wrong number or type of arguments for overloaded function 'IVector_create'

Created by: huayong

出现的问题如title, 主要目的是实现分割任务,所以自己写了个reader生成器来读取自己的训练数据,代码如下:

def load_image(file, image_size=224, mean_file=None): im = cv2.imread(file) im = cv2.resize(im, (image_size, image_size)) im = np.array(im).astype(np.float32) mean = np.array([103.94, 116.78, 123.68]) im = im / 255.0 - mean / 255.0 im = im / 255.0 im = im.transpose((2, 0, 1)) im = im.astype(np.float32) return im

def load_label(file, label_size=224): label_data = cv2.imread(file, cv2.IMREAD_GRAYSCALE) label_data = cv2.resize(label_data, (label_size, label_size)) label_data = np.array(label_data) label_data = label_data.astype(int) return label_data

def reader_creator(sub_name):

def reader():
    set_file = SET_FILE.format(sub_name)
    sets = [line.strip() for line in open(set_file, 'r')]
    for line in sets:
        line = line.strip()
        data_file = DATA_FILE.format(line)
        label_file = LABEL_FILE.format(line)
        data = load_image(data_file)
        label = load_label(label_file)
        data = np.array(data)
        label = np.array(label)
        yield data, label
return reader

但是在train过程中出现错误如下: Traceback (most recent call last): File "/Applications/PyCharm CE.app/Contents/helpers/pydev/pydevd.py", line 1599, in globals = debugger.run(setup['file'], None, None, is_module) File "/Applications/PyCharm CE.app/Contents/helpers/pydev/pydevd.py", line 1026, in run pydev_imports.execfile(file, globals, locals) # execute the script File "/Volumes/Huayong/baidu/paddlepaddle/Seg/seg_train.py", line 96, in train(net, class_num) File "/Volumes/Huayong/baidu/paddlepaddle/Seg/seg_train.py", line 79, in train 'label': 1}) File "/Library/Python/2.7/site-packages/paddle/v2/trainer.py", line 169, in train in_args = feeder(data_batch) File "/Library/Python/2.7/site-packages/py_paddle/dataprovider_converter.py", line 282, in call return self.convert(dat, argument) File "/Library/Python/2.7/site-packages/paddle/v2/data_feeder.py", line 133, in convert return DataProviderConverter.convert(self, reorder_data(dat), argument) File "/Library/Python/2.7/site-packages/py_paddle/dataprovider_converter.py", line 277, in convert scanner.finish_scan(argument) File "/Library/Python/2.7/site-packages/py_paddle/dataprovider_converter.py", line 211, in finish_scan ids = swig_paddle.IVector.create(self.ids, self.data_in_gpu) File "/Library/Python/2.7/site-packages/py_paddle/swig_paddle.py", line 1344, in create return _swig_paddle.IVector_create(args) NotImplementedError: Wrong number or type of arguments for overloaded function 'IVector_create'. Possible C/C++ prototypes are: IVector::create(std::vector< int,std::allocator< int > > const &,bool) IVector::create(std::vector< int,std::allocator< int > > const &) train代码如下: def train(net, class_num): lbl = paddle.layer.data( name="label", type=paddle.data_type.integer_value(224224))

cost = paddle.layer.cross_entropy_cost(input=net,
                                       label=lbl)


# Create parameters
parameters = paddle.parameters.create(cost)

# Create optimizer
# momentum_optimizer = paddle.optimizer.Momentum(
#     momentum=0.9,
#     regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),
#     learning_rate=0.1 / 128.0,
#     learning_rate_decay_a=0.1,
#     learning_rate_decay_b=50000 * 100,
#     learning_rate_schedule='discexp')

# create optimizer
adam_optimizer = paddle.optimizer.Adam(
    learning_rate=2e-3,
    regularization=paddle.optimizer.L2Regularization(rate=8e-4),
    model_average=paddle.optimizer.ModelAverage(average_window=0.5))

# Create trainer
trainer = paddle.trainer.SGD(
    cost=cost, parameters=parameters, update_equation=adam_optimizer)

# End batch and end pass event handler
def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 2 == 0:
            print "\nPass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)
        else:
            sys.stdout.write('.')
            sys.stdout.flush()
    if isinstance(event, paddle.event.EndPass):
        # save parameters
        with open('params_pass_%d.tar' % event.pass_id, 'w') as f:
            trainer.save_parameter_to_tar(f)

        result = trainer.test(
            reader=paddle.batch(
                seg_reader.train(), batch_size=1),
            feeding={'image': 0,
                     'label': 1})
        print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

trainer.train(
    reader=paddle.batch(
        paddle.reader.shuffle(
            seg_reader.train(), buf_size=50000),
        batch_size=1),
    num_passes=1,
    event_handler=event_handler,
    feeding={'image': 0,
             'label': 1})
return

pycharm debug模式下查看读取的数据应该没有问题

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#5891
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7